Deep Space ICCHIBAN: An International Comparison of Space Radiation Dosimeters aboard the NASA Deep Space Test Bed

Eric Benton

Eril Research, Inc. & Oklahoma State University 1110 Innovation Way, Suite 100 Stillwater, OK 74074-1541 USA eric@erilresearch.com

10th Workshop for Radiation Monitoring on ISS

7-9 September 2005

Introduction

- NASA's focus has shifted away from LEO and ISS, and towards Exploration
 - return to the Moon
 - human missions to Mars
- Radiation Environment in deep space (beyond Earth's Magnetosphere) differs from that in LEO
 - no trapped radiation
 - no geomagnetic cutoff imposed on GCR and SPE
- Easiest access to "Deep Space" radiation environment is by high altitude balloons flying at polar latitudes

NASA Deep Space Test Bed (DSTB)

- Managed from NASA Marshall Space Flight Center and National Space Science & Technology Center (NSSTC) as part of NASA's Space Radiation Shielding Project
- High altitude (~37 km or ~125,000 ft) balloon platform to fly at polar latitudes
- Proposal for Deep Space ICCHIBAN submitted in Nov. '04 and accepted in May '05
- Will be carried out in parallel with another DSTB grant: "Space Radiation Shielding Testing on the NASA DSTB"

DSTB Objectives

- Provide a platform for direct exposure to the full composition and energy spectra of Galactic Cosmic Rays (GCR)
- Enable experimental validation of NASA's radiation transport codes in a realistic GCR environment
- Test shielding effectiveness of typical spacecraft materials as well as novel materials in the GCR flux
- Test new radiation monitoring instrumentation

DSTB Implementation

- Utilize NASA's scientific balloon program to provide high-altitude exposures:
 - <5 g/cm² atmospheric overburden
 - 15-20 days of exposure
 - Operates under reduced restrictions compared to flight experiments: reduced costs, shorter schedules and reviews
- Conduct multiple flights (one flight per year)
- Develop an architecture to conduct multiple experiments on each flight
- Accommodate changes in the payload configuration from year to year

DSTB Design

Shielding Turntable

Exposure Deck Electronics Deck SIP Deck (Balloon Equip.) SIP Solar Arrays DSTB Solar Arrays

Eril Research, Inc.

DSTB Specifications

- Gondola dimensions: height 19.6 ft., width 11.7ft.
- Maximum science payload: 4000 lbs./ 5500 lbs. with balloon equipment (shared resource)
- Power: 600 watts at 28 VDC (shared resource)
- Omni-directional or pointed gondola
- Telemetry: 6 kbits/second
- Experimental interface: RS-232, parallel, DIO, smartport (LAN)
- Average of 10 experiments per flight:
 - Average mass: 150 lbs. per experiment
 - Average power: 60 watts per experiment

Eril Research, Inc.

DSTB Standard Radiation Instrument Suite

- Passive Dosimetry System (Eril Research, Inc.)
 - CR-39 Plastic Nuclear Track Detectors (ERI)
 - PorTL Portable TLD System (KFKI AERI, Hungary)
 - Liulin-4 Mobile Dosimetry Units (STILBAS, Bulgaria)
 - $AI_2O_3:C OSL (OSU)$
 - Thermal/Resonance Neutron Detectors (ERI)
- Tissue Equivalent Proportional Counter (CARR, Prairie View A&M University)
- Neutron Monitoring System (NSSTC)
- Charged Particle Spectrometer (NSSTC)

DSTB Preliminary Experiments

- Characterization of radiation environment at ~37 km, polar latitudes by piggyback experiments on previous Antarctic balloon missions
 - ATIC (2002/03)
 - TIGER (2003/04)
 - TRACER (2003/04)
 - CREME (2004/05)
- Test of PDS on DSTB Certification Flight in June 2005 from Fort Sumner, New Mexico

TRACER (Transition Radiation Array for Cosmic Energetic Radiation) Piggyback Experiment

- U. of Chicago
- Dec. 12-27, 2003
- 324 hours
- 36-39 km

TRACER Piggyback Detectors

- CR-39 PNTD (ERI), TLD-700 (ERI), OSLD & TLD-100 (OSU)
- One Detector pointing towards Zenith
- One Detector pointing towards Horizon

Eril Research, Inc.

TRACER TLD/OSLD Results

	Dose	Average Dose Rate
	(mGy)	(µGy/hour)
TRACER Zenith Detector		
ERI TLD-700 (⁷ LiF:Mg,Ti)	1.58 ± 0.05	4.88 ± 0.15
OSU TLD-100 (LiF:Mg,Ti)	1.66 ± 0.15	5.12 ± 0.46
OSU TLD-300 (CaF ₂ :Tm)	1.59 ± 0.02	4.91 ± 0.06
OSU Al ₂ O ₃ :C OSL chips	1.33 ± 0.03	4.10 ± 0.09
OSU Luxel Al ₂ O ₃ :C OSL	1.745 ± 0.002	5.386 ± 0.006
TRACER Horizon Detector		
ERI TLD-700 (⁷ LiF:Mg,Ti)	1.60 ± 0.05	4.94 ± 0.15
OSU TLD-100 (LiF:Mg,Ti)	1.72 ± 0.11	5.31 ± 0.34
OSU TLD-300 (CaF ₂ :Tm)	1.68 ± 0.04	5.19 ± 0.12
OSU Al ₂ O ₃ :C OSL chips	1.34 ± 0.05	4.14 ± 0.15
OSU Luxel Al ₂ O ₃ :C OSL	1.787 ± 0.003	5.515 ± 0.009
1997 Arctic Balloon Mission		
Detector 1	2.37 ± 0.07	8.00 ± 0.24
Detector 2	2.39 ± 0.07	8.07 ± 0.24
1994 JACEE-13	2.33 ± 0.07	7.74 ± 0.23

TRACER Integral LET Flux Spectra

TRACER Integral LET Flux Spectra

TRACER Total Integral LET Flux Spectra CREME96 Calculation

TRACER Primary GCR Integral LET Flux Spectra CREME96 Calculation

TRACER Total Dose & Dose Eq. Results from combined CR-39 PNTD & TLD

	Dose Rate	Dose Rate	Total Dose	Dose Eq. Rate	Total Dose	Average Quality	Total Average
	<10 keV/µm	≥10 keV/µm	Rate	≥10 keV/µm	Eq. Rate	Factor ≥ 10	Quality Factor
	(µGy/hr)	(µGy/hr)	(µGy/hr)	(µSv/hr)	(µSv/hr)	keV/µm	
2003 TRACER							
Zenith	3.64 ± 0.15	1.83 ± 0.07	5.47 ± 0.31	22.34 ± 1.09	25.98 ± 1.68	12.21 ± 0.76	4.75 ± 0.36
Horizon	4.21 ± 0.18	1.05 ± 0.04	5.26 ± 0.31	11.47 ± 0.63	15.68 ± 1.09	10.92 ± 0.75	2.98 ± 0.24
2002 ATIC*							
Zenith	na	0.83 ± 0.04	na	7.31 ± 0.07	na	8.81 ± 0.05	na
Horizon	na	0.56 ± 0.04	na	3.39 ± 0.06	na	6.05 ± 0.07	na
1997	7.79 ± 0.25	0.43 ± 0.01	8.21 ± 0.25	4.54 ± 0.17	12.33 ± 0.29	10.56 ± 0.47	1.50 ± 0.04
1994 JACEE-13	6.64 ± 0.58	1.79 ± 0.15	8.44 ± 1.04	22.09 ± 1.36	28.74 ± 3.08	12.33 ± 1.30	3.41 ± 0.47
CREME96							
no shielding	2.38	14.31	16.69	126.44	128.81	8.84	7.72
$5 \text{ g/cm}^2 \text{Al}$	2.20	1.46	3.66	20.91	23.11	14.32	6.31
$10 \text{ g/cm}^2 \text{ Al}$	2.11	1.18	3.29	16.61	18.71	14.08	5.69

*TLD was not included in the 2002 ATIC passive detector experiment.

Zenith, 1 surface Zenith, 2 surface 1.2 1.2 1.0 1.0 **TRACER**: 0.8 0.8 y-axis (cm) y-axis (cm) **Vector Plot** 0.6 0.6 of Track 0.4 0.4 0.2 0.2 **Distributions** 0.0 0.0 in CR-39 .4 0.6 0.8 x-axis (cm) 0.0 0.2 0.4 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 x-axis (cm) **PNTD** Horizon, 1 surface Horizon, 2 surface 1.2 1.2 N 1.0 1.0 y-axis (cm), veritical y-axis (cm), veritical 0.8 0.6 0.4 <15 keV/µm 15 - 30 keV/µm 0.2 0.2 30 - 60 keV/µm 60 - 100 keV/µm 100 - 200 keV/µm 0.0 0.0 ----- >200 keV/μm 0.6 0.8 0.8 0.4 0.0 0.2 0.4 0.6 1.0 1.2 0.0 0.2 x-axis (cm), horizontal x-axis (cm), horizontal

Eril Research, Inc.

1.0

1.0

1.2

1.2

TRACER Piggyback Experiment: Conclusions

- Radiation environment at 37 km, polar latitudes is same as "Deep Space" environment only for particles with trajectories nearly perpendicular to the Earth's surface...i.e. field is highly directional
- Significant secondary component
 - probably albedo neutrons and protons
 - secondary neutrons from the mass of the gondola could also be significant source
 - need to conduct "tether" experiment to find out.

DSTB Certifcation Flight: Overview

- June 10, 2005 from Ft. Sumner, NM
- 9.5 hr duration
- ~37 km avg. alt.
- Detectors
 - 3 Liulin-4 MDUs
 - PorTL TLD Cells
 - Pille TLD Cells
 - OSL (no data)
 - TLD-600/TLD-700 (no data)
 - CR-39 PNTD not flown

DSTB Certification Flight

DSTB Certification Flight: Liulin-4 MDUs

DSTB Certification Flight: Dose Results

Detector	Dose	Average Dose Rate	Average Flux
	(µGy)	(µGy/hr)	(particles/cm ² s)
Liulin-4U MDU #1, bare	20.6	2.28 ± 0.78	0.69 ± 0.22
Liulin-4U MDU #2, 5 g/cm ² Al	23.0	2.55 ± 0.86	0.66 ± 0.22
Liulin-4J MDU #5, carousel	29.5	3.27 ± 1.07	0.82 ± 0.25
MDU #5, bare		3.00 ± 0.76	0.71 ± 0.07
MDU #5, 5 g/cm ² Al		3.32 ± 0.80	0.79 ± 0.08
MDU #5, 15 g/cm ² Al		3.64 ± 0.88	0.89 ± 0.09
MDU #5, 15 g/cm ² PE		3.05 ± 0.76	0.73 ± 0.08

		Dose	Average Dose
		(µGy)	Rate (µGy/hr)
PorTl	Bare	27.4 ± 1.7	2.88 ± 0.18
	5 g/cm ² Al	29.3 ± 0.6	3.08 ± 0.06
	Control	11.7 ± 0.2	0.07 ± 0.00
Pille	Bare	22.8 ± 0.8	2.40 ± 0.08
	Control	11.4 ± 0.7	0.08 ± 0.00

DSTB Certification Flight: Conclusions

- Portable TLD systems like Pille and PorTL permit measurement of lower doses than TLD annealed and analyzed in the laboratory
- Effect of shielding on dose is highly complex:
 - competing effects of ionization and fragmentation
 - depends not only on shielding depth, but on shielding composition
- One can obtain useful data from an extremely short, balloon experiment at easily accessible altitudes...
 "Near Space"

Deep Space ICCHIBAN: Objectives

- 1. Intercompare the response of space radiation detectors used for crew and area dosimetry aboard piloted spacecraft in the deep space galactic cosmic ray (GCR) environment aboard a circumpolar DSTB balloon flight.
- 2. Provide *in situ* measurements for use in assessing the ability of space radiation transport models and space radiation environment models, including models of geomagnetic cut-off rigidity.
- 3. Compare and reconcile dosimetric measurements from the Deep Space ICCHIBAN experiment with results from accelerator-based ICCHIBAN experiments in order to assess the efficacy and improve the design of the space radiation simulations conducted as part of the accelerator-based ICCHIBAN experiments.

Eril Research, Inc.

Deep Space ICCHIBAN: Passive Detectors

- TLD
- OSLD
- CR-39 PNTD
- Bubble Detector
- Other

Deep Space ICCHIBAN: Active Detectors

- Tissue Equivalent Proportional Counter (DSTB standard radiation instrument suite)
- Liulin-4 MDU (DSTB standard radiation instrument suite)
- DOSTEL (U. of Kiel, old unit flown on Shuttle)
- HETn High Energy Telescope (Southwest Research Institute)

Deep Space ICCHIBAN: Environmental Sensor Package

Sensor/Component	Part No.	Mfg.
3-axis Magnetometer	CXM113	Crossbow Technologies
3-axis accelerometer	CXL10HF3	Crossbow Technologies
PRV-0858X-01 Dual Pressure	PRV-0858X-01	Parvus
Sensor/Temperature Sensor		
Orbitrak 8R PC/104 8 channel GPW	PRV-5033X-01	Parvus
w/Trimble Lassen LP Receiver		
Athena 400 MhZ 128 Mb DAQ	ATH400-128	Diamond Systems
Jupiter 50W power supply	JUP-MM-SIO	Diamond Systems

Deep Space ICCHIBAN: Conclusions

- Same format as accelerator-based ICCHIBAN experiments.
- Open to all investigators who have previously participated in the ICCHIBAN project, as well as other laboratories participating in dosimetry in space.
- First flight scheduled for June 2006 from Sweden to Alaska.
- Second flight tentatively scheduled for Dec. 2007 in Antarctica.
- Contact me (eric@erilresearch.com) if you have not previously participated in the ICCHIBAN project and want to participate in Deep Space ICCHIBAN

Eril Research, Inc.

Deep Space ICCHIBAN

P.I.: Eric Benton, Eril Research, Inc.,

Co-I's: Yukio Uchihori, Nakahiro Yasuda, *NIRS,* Soenke Burmeister, Rudolf Beaujean, *U of Kiel,* Eddie Semones, *NASA JSC,* Arik Posner, Donald Hassler, *SwRI,* Brad Gersey, *PV A&M U,* and most importantly **YOU!!!**

Acknowledgements:

TRACER Team at U. of Chicago & Mark Christl (*NSSTC*), Ramona Gaza (*OSU, now JSC SRAG*), and Allen Frank (*ERI*) for participation in TRACER Piggyback Experiment, Mark Christl & Tom Parnell (*NSSTC*) Yukio Uchihori (*NIRS*), Tsvetan Dachev (*STILBAS*), Istvan Apathy & Sandor Deme (*KFKI AERI*), Gabriel Sawakuchi & Eduardo Yukihara (*OSU*) and Allen Frank (*ERI*) for help with DSTB Certification Flight Experiment

Eril Research, Inc.

