MATROSHKA – Overview of 2004 - 2005

T. Berger¹, G. Reitz¹, S. Burmeister², R. Beaujean², Neal Zapp³

¹DLR - Institute of Aerospace Medicine, 51147 Köln, Germany

²Universität Kiel/IEAP, 24098 Kiel, Germany

³JSC, Houston, USA

Slide 1 > WRMISS 2005, NIRS, Japan >T.Berger

- → ESA Project
- ✓ Project Manager Dr. Reitz, DLR
- International Contribution:
 15 Institutes

Günther Reitz	German Aerospace Center, DLR, Cologne, Germany	
Rudolf Beaujean Christian-Albrechts-Universität Kiel, Kiel, Germany		
M. Luszik-Bhadra	Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany	
V. Shurshakov, Y. Akatov	Institute for Biomedical Problems, IMBP, Moscow, Russia	
P. Olko, P. Bilski	Institute for Nuclear Physics, INP, Krakow, Poland	
J. Palfalvi	Atomic Energy Research Institute, AERI, Budapest, Hungary	
D. O'Sullivan DIAS, Dublin, Ireland		
D. Bartlett	National Radiological Protection Board, NRPB, Chilton, UK	
N. Vana Atominstitute of the Austrian Universities, ATI, Vienna, Austria		
Y. Uchihori	NIRS, Chiba, Japan	
S. Yoshitomi, A. Nagamatsu	JAXA, Japan	
F. Cucinotta	NASA JSC, Houston, TX, USA	
B. Atwell	Space Systems Division, Boeing, Houston, USA	
E. Benton	Eril Research Inc., Stillwater, USA	
S. McKeever	Oklahoma State University, Stillwater, USA	
J. Miller and C. Zeitlin	Lawrence Berkeley Laboratory, Berkeley, CA, USA	

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 3 > WRMISS 2005, NIRS, Japan > T. Berger

- MATROSHKA (MTR) Facility is designed to determine the radiation exposure of an astronaut / cosmonaut during an extravehicular activity (EVA)
- Radiation exposure is measured in a Phantom simulating an Human Upper Torso shielded with a Carbon Fibre structure simulating the EVA suit
- Active and Passive Radiation
 Detectors are distributed over the whole body to determine skin and organ doses

- MATROSHKA is the first long duration phantom experiment positioned outside a Space Station
- Results shall give the dose distribution inside a Human Phantom for a better correlation between skin and organ dose and for better risk assessment in future long duration space flight

MATROSHKA simulates an astronaut during an Extra Vehicular Activity. A human phantom is exposed in a pressurized container which meets the mean shielding thickness of a space suit (0.5 – 1 g/cm2).

Base structure

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Phantom

Container

Phantom Torso

+ Poncho

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

+ MLI

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

✓ MATROSHKA 2004 - 2005

Slide 10 > WRMISS 2005, NIRS, Japan > T. Berger

- → Launch:
- → Docking:
- → EVA:
- \neg Active instruments:
- → Exposure Time:
- → Back inside ISS:

- 29. January 2004
- 31. January 2004
- 26. February 2004
- April 2004
 - 1 ¹/₂ years
 - 18. August 2005

✓ MTR inside ISS:

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft 31. January 2004 – 26. February 2004

Slide 12 > WRMISS 2005, NIRS, Japan > T. Berger

→ MTR EVA: 26. February 2004

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 13 > WRMISS 2005, NIRS, Japan > T. Berger

→ MTR Outside ISS: 26. February 2004 - 18. August 2005

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 14 > WRMISS 2005, NIRS, Japan > T. Berger

→ MTR Outside ISS: 26. February 2004 - 18. August 2005

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 15 > WRMISS 2005, NIRS, Japan > T. Berger

→ MTR Outside ISS: 26. February 2004 - 18. August 2005

Slide 16 > WRMISS 2005, NIRS, Japan > T. Berger

✓ MTR Activation of active instruments: April 2004

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 17 > WRMISS 2005, NIRS, Japan > T. Berger

✓ MTR Recovery EVA: 18. August 2005

Slide 18 > WRMISS 2005, NIRS, Japan > T. Berger

MATROSHKA Science and Housekeeping Data

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 22 > WRMISS 2005, NIRS, Japan > T. Berger

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 23 > WRMISS 2005, NIRS, Japan > T. Berger

DOSTEL / April 04			JSC / April 04
フ	GCR – Dose :	296 µGy/day	277µGy/day
フ	Qualityfactor :	3.1 ± 0.3	3.7
フ	SAA – Dose :	256 μGy/day	219µGy/day
フ	Qualityfactor :	1.5 ± 0.4	1.4
フ	Dose :	552 μGy/day	
フ	Dose equivalent:	1.36 mSv/day	

Outside ISS measurements (April 2004)

- → DOSTEL: ~ 1.3 mSv/day
 - $\sim 550 \ \mu Gy/day$
- \rightarrow EV-CPDS: $\sim 400 \,\mu\text{Gy/day}$

Inside ISS measurements (April 2004)

- ✓ NASA TEPC:
- \neg TLD's:

- ~ 450 550 µSv/day
- $\sim 150 250 \ \mu Gy/day$
- $\sim 220 270 \ \mu Gy/day$

- → Radiation exposure during an EVA:
- → Radiation exposure inside the ISS:

- ~ 1.3 mSv/day
- \sim 0.4 mSv/day

Countrate of the active radiation detector "DOSTEL" over a period of 16 days

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

MATROSHKA OUTLOOK 2005 - 2006

MATROSHKA I

- ✓ MATROSHKA Recovery EVA on the 18. August 2005
- MATROSHKA passive detectors to be returned with Soyuz in October 2005
- → Passive detectors distributed to investigators ~ November 2005

Slide 28 > WRMISS 2005, NIRS, Japan > T. Berger

MATROSHKA II

- ✓ Preparation for MATROSHKA II already started
- Passive detector packages to be uploaded with Progress in December 2005
- Passive detector packages to be ready by the end of October 2005

Slide 29 > WRMISS 2005, NIRS, Japan > T. Berger

Thanks very much for your attention !!

Slide 30 > WRMISS 2005, NIRS, Japan > T. Berger