10th Workshop on Radiation Monitoring for the International Space Station Sep. 7-9th, 2005 Chiba Japan

Neutron Spectrometer Onboard Aircraft and Spacecraft

T. Nakamura, M. Takada and K. Fujitaka

ISPS ##

Motivation

- Neutron energy spectrum over 10 MeV is necessary for radiation protection for aircrew and astronauts.
- Using the Bonner ball detector, neutron spectra were measured.
- Problem; Particle discrimination of neutrons from charged particles.
- To measure neutron spectrum over 10 MeV, we studied the phoswich typed neutron detector.

High Energy Neutron Detector

Photomultipiler tube

Plastic scintillator Liquid scintillator

Data Acquisition Unit

Measure signal pulse shapes

- 20 ns/pt and 20 points
- And pulse heights
- Small data loss
 - Counting rate > 1,000 cps
- Simple operation
 - Push the start/stop switch
- Possible battery operation
 - + 24 V and 35 W

Neutron detector

Proton and Neutron Measurement

Neutron detector

Data acquisition unit

- Proton signals;
 - 160 MeV protons
 - Change energy using Al absorbers
- Neutron signals;
 - Produced by the p(160 MeV)–C reaction
- Signals were acquired by using:
 - The digital storage oscilloscope
 - The onboard data acquisition unit

Particle Discrimination

- Signals acquired by using the digital oscilloscope
- Integrate signals with two gates;
 - A. At the signal peakB. At the signal tail

Response to Neutrons

- 1. Calculate energy deposition spectrum using MCNPX
- Measure particle light output by directing beams into the detector
- 3. Convert deposited energy to light output
- Measure neutron response at NIRS cyclotron (p-Li) and HIMAC (p-C)
- 5. Meas. and cal. agree each other, except low light output

Using Onboard DAQ Unit

At high light output, pulse heights agreed; Onboard DAQ unit CAMAC system MCNPX Calculation Below 30 MeVee, calculation is small No tail component of p-Li neutron source is included in the calculation

Results

- The detector has the possibility to discriminate neutrons from gamma rays and protons; However, using the onboard DAQ unit, lost the possibility to discriminate neutrons from gamma rays.
- We should solve this problem.
- The measured and calculated neutron responses agreed each other. The DAQ measured the absolute pulse heights.
- Up to 160 MeV and more, we will make the response function.
- We hope to measure neutrons onboard aircraft and spacecrafts.

Small Commercial Dosimeters for Cosmic Ray Measurements Onboard Aircraft

T. Nakamura, M. Takada, T. Nunomiya, Y.Uchihori, L.G.I. Bennett, A.R. Green and B.J. Lewis,

> 10th Workshop on Radiation Monitoring for the International Space Station Sep. 7-9th, 2005 Chiba, Japan

Small Commercial Dosimeters

NRF-20, Fuji Elect. Sys. Co. Ltd. Si detector Calibrated with Cs gamma ray Can work for 2 months with a battery **DIS-100**

Direct Ion Storage Technology (DIS) Calibrated with Cs gamma ray Can work for 2 weeks with a battery

Flight From Toronto to Singapore

RMC Detectors

Ion Chamber

FH41B-10

Calculation Code

PCAIRE 7.2
Semi-empirical model
EPCARD 3.2
Based on the FLUKA calculation
CARI-6M
Theoretical model, LUIN

Non-neutron Radiation

Total Radiation

Another Small Dosimeter

• NRY-21

- Two Si detectors, gamma and neutron
- Tokyo-Paris return flight
 20 μSv_{ave}
- Cal. Non-neutrons
 - 18-25 μSv, 33-35,000 ft

NRY21, Flight Dose Rate

Return flight, Singapore to Toronto

Conclusion

- The small detectors gave comparable LET results for the flights flown. They are useful due to their long battery life and compact.
- Potentially, they will give correct results for often routes, but further measurement is required. Now much more data are being measured.
- It is possible that they then could measure low LET radiation in spacecraft.
- To measure total dose equivalent, a neutron dosimeter is necessary. It has been developed.

Ratio of signal tail to pulse height

Using Onboard DAQ Unit

- Discriminate neutrons from protons
 - At high channel of pulse height, difficult to decide PSD because of small neutron event
- Gamma rays are not discriminated from neutrons

NRY20, Non Neutrons

Neutrons

Acknowledgement

- We want to thank Air Canada and Singapore Airlines staff for their help and flight data.
- We also thank for Nagase Landauer, Ltd who loaned us the DIS dosimeter.