DESIRE

Dose Estimation by Simulation of the ISS Radiation Environment

http://www.particle.kth.se/desire/

Geant4 simulations of the Columbus/ISS radiation environment

<u>T. Ersmark</u>¹, P. Carlson¹, E. Daly², C. Fuglesang³, I. Gudowska⁴, B. Lund-Jensen¹, R. Nartallo², P. Nieminen², M. Pearce¹, G. Santin², N. Sobolevsky⁵

¹Royal Institute of Technology (KTH) (Stockholm)
 ²ESA-ESTEC (Noordwijk)
 ³EAC/JSC (Cologne/Houston)
 ⁴Karolinska Institutet (Stockholm)
 ⁵Institute for Nuclear Research (Moscow)

Outline

- 1. The DESIRE project
- 2. Geant4 physics validation studies
- 3. Columbus and ISS geometries
- 4. Radiation environment models
- 5. Simulation results
- 6. Conclusions and future

The DESIRE project

- "Dose Estimation by Simulation of the ISS Radiation Environment"
- Aimed at accurate calculations of the radiation flux and doses to astronauts inside the European ISS laboratory Columbus.
- Utilizes Geant4 for radiation transport.
- Funded by ESA (15613/NL/LvH) and SNSB.
- 1. Validation of Geant4 physics models by comparisons to...
 - Experiments
 - NASA BRYN-/HZETRN programs
 - SHIELD-HIT Monte Carlo program
- 2. Implementation of Columbus and ISS geometries in Geant4.
- 3. Evaluation of incident radiation environment models.
- 4. Full simulations of particle fluxes and doses inside Columbus.

Geant4 physics validation studies

- Incident protons with energies 10-1000 MeV.
 - Neutron production
 - Energy deposition
 - Proton penetration
 - Water, Beryllium, Carbon, Aluminum, Iron, Uranium
- Comparisons to Los Alamos experimental data, SHIELD-HIT, BRYNTRN.
- Published in IEEE Trans. Nucl. Sci. 51,1378 (2004).

Summary: Energy deposition/proton penetration ok. Neutron production ok after release of cascade models (since 2003).

Columbus and ISS geometries

- "Columbus1"
 - Simple cylinder-like geometry
 - 10 volumes; MDPS1/2/3 + hull
 - 4200 kg
- "Columbus3"
 - Detailed geometry
 - 800 volumes
 - 16750 kg

• ISS

- 350-400 volumes
- 352 tons (369 tons)

The ISS Geant4 geometry

The "Columbus3" Geant4 geometry

Radiation environment models

Studied incident radiation fields

- Trapped protons (isotropic and anisotropic)
- GCR protons
- SPE protons
- Cosmic ray albedo neutrons
- Other radiation fields
 - GCR ions
 - Solar ions

Web interfaces to models

- SPENVIS ("SPV") (http://www.spenvis.oma.be/spenvis/)
- CREME96 ("C96") (https://creme96.nrl.navy.mil)
- SIREST ("SRS") (http://sirest.larc.nasa.gov)

Incident spectra

Incident particle spectra at 380 km

- Belt protons
- GCR protons
- SPE protons
- CR albedo neutrons

Belt proton altitude dependence and anisotropy

Incident proton spectra at 330 km, 380 km, 430 km

- Solar minimum/maximum
- Anisotropy; spectra for protons coming from *port* and *startboardbackward* (at solar-minimum and 380 km)

Simulation results

 Spectra of particles entering Columbus

- Doses at 10 mm depth
 in ICRU sphere
 - Statistics...
- 380 km and sol-min unless noted

Belt protons

Belt proton doses at three altitudes for different geometry configurations.

Preliminary study of belt proton anisotropy

Penetrating protons from starboard-backward direction.

Cosmic ray protons

Penetrating primary/secondary protons and secondary neutrons due to incident cosmic ray protons (CREME96-min, 380 km)

Cosmic ray protons; Col3withISS

Spectra of various particle species entering Columbus in the "Col3withISS" geometry

Cosmic ray proton doses

Dose rates in ICRU sphere due to incident cosmic ray protons; itemized by geometry model and particle type at surface of sphere

SPE protons & albedo neutrons

Modell comparisons; Col3withISS

10th WRMISS, Chiba, 050907, Tore Ersmark (KTH)

18/19

Conclusions and future

- A detailed model of Columbus and ISS (14A) has been implemented as Geant4 geometries.
- Dose rates has been calculated for standard incident radiation field models
 - Belt protons (AP8-MIN): 135 μGy/d
 - Cosmic ray protons (CREME96, min): 60 μGy/d
 - Cosmic ray albedo neutrons (SIREST): 0.5 μ Gy/d
- Study of the influence of belt proton anisotropy in progress.

GCR- and solar ions will be studied the next few months.

Acknowledgment:

Computing resources were made available with support from the Göran Gustafsson Foundation