Recent Radiation Monitoring Results: Expedition 10, 11 and STS-114

E. Semones, M. Weyland; B. Rutledge, T. Shelfer; R. Gaza; D. Zhou; A. Johnson; and N. Zapp WRMISS 10

Chiba, Japan

Lyndon B. Johnson Space Center

Mission Timeline

Expedition	Status	Launch (GMT)	Landing (GMT)	Duration	Crew
------------	--------	-----------------	------------------	----------	------

ISS-9	Flown	19-Apr- 2004 03:19:00	24-Oct- 2004 12:36:00	188 days 9 hr. 17min.	Gennady Padalka, Michael Fincke
ISS-10	Flown	14-Oct- 2004 03:06:00	24-Apr- 2005 22:08:00	192 days 19 hr. 2min.	Leroy Chiao, Salizhan Sharipov
ISS-11	In Progress	15-Apr- 2005 00:46:25	Estimated: 10-Oct- 2005	177 days 23 hr. 13min.	Sergei Krikalev, John Phillips

Mission (Increment)	Status	Launch Date (GMT)	Landing Date (GMT)	Duration (hours)	Inclination (°)	# Crew	# Intl. Crew	EVA's	Vehicle
<u>STS-114</u> (<u>LF1)</u>	Flown	26-Jul-2005 14:39:01	09-Aug-2005 12:11:00	13 days 21 hr. 31min.	51.6	7	1	3	Discovery

International Space Station As Flown Altitude Profile

Solar Cycle Progression

SRAG Operational Radiation Measurements

Area monitoring devices

- Passive detectors: Thermoluminescence Dosimeters (TLD), Optically Stimulated Luminescence detectors (OSLDs) and Plastic Nuclear Track Detectors (PNTD)
- Active detectors: Tissue Equivalent Proportional Counters (TEPC) and Solid-State (Si) Detectors: IV-CPDS, EV-CPDS

Personal dosimetry- Each crewmember carries a dosimeter for the duration of their mission.

- TLDs: LiF:Mg,Ti; CaF₂:Tm
- PNTD CR-39 (USF-4, 600 μm)
- OSLDs: Luxel, "dots" and roll
 22-24 detectors in Lexan holder at a depth of 0.18 g/cm^2

Space radiation dosimetry

• What we want: <u>Dose equivalent</u>:

$$H = \sum_{i} H_{i} = \sum_{i} D_{i} \times Q(L_{i})$$

• NCRP 142, 2002 Recommendation 11, Equation 6.1:

$$H = QD_{OSLD/TLD} + \int Q(L) D_{PNTD}(L) dL$$

LET \leq 10 keV/ μ m; Q = 1 LET \geq 10 keV/ μ m; Q = Q(L)

Schematic of Passive Dosimeters

New NASA-SRAG Passive Radiation Detector used for STS-114 and Expedition 12

- TLD-100 (8 samples)
- TLD-300 (6 samples)
- TLD-600 (2 samples)
- TLD-700 (2 samples)
- OSLD/Luxel (2 samples; 6 samples future flights)
- CR-39 (2 samples)

Detector Stack

Lexan Cover: 0.15 cm

Label (White Paper)

CR-39 (1 Sheet, Bare) 600 µm

Polycarbonate Film (1 Sheet)

CR-39 (1 Sheet, Bare) 600 µm

Polycarbonate Film (2 Sheets)

TLDs/OSLD in Lexan Holder: 0.45 cm

Service Module Monitoring Locations

US Destiny Lab to Zvezda SM = 44.5 meters

US LAB Monitoring Locations Lab S6 Overhead Lab Window TeSS Lab P1/P2 Lower Stand-off Lab Forward

Node Dosimeter Location 2

SM-P327 (R16) Location

ISS008E09109

ISS RAM monitoring Periods for Expedition 1-10

Start Date	End Date	Exposure Duration (days)
5/20/1999	5/29/2000	375
5/19/2000	9/20/2000	124
9/8/2000	12/11/2000	93
12/1/2000	5/1/2001	151
4/19/2001	7/24/2001	96
7/12/2001	8/22/2001	40
8/10/2001	12/17/2001	128
12/5/2001	4/19/2002	134
4/8/2002	6/19/2002	71
6/5/2002	12/7/2002	184
11/24/2002	5/4/2003	160
10/18/2003	4/30/2004	195
4/19/2004	10/24/2004	188
10/14/2004	4/24/2005	192

Passive Monitoring Summary

- Since launch of ISS in 1998 there have been 14 separate passive monitoring periods
- The average length of monitoring periods is 152 days.
 ~2100 days of continuous monitoring.
- There are 17 permanent monitoring locations covering 30 meters of habitable volume
 - Monitoring locations are only separated by a few meters

ISS Dose Rate Summary: TLD-100

Horizontal Alignment: SMP442

Vertical Alignment: SMP442

ICCHIBAN 3 Neon

ICCHIBAN 3 Neon

Expedition 10 CR-39 Simulation

D(TLD-300) is 38.9 mGy in 192.79 days, TEPC was operated for 16.28 days
 D(TLD 300) for 16.28 days = 16.28 x (38.9/192.79) = 3.28 mGy

 D(TLD-100) for 16.28 days = 16.28 x (34.92/192.79) = 2.95 mGy

Heavy Ion Efficiency

Comparison of TLD-TEPC combination

TLD	Average	D(total)/	D (TEPC)	D	Н	Q
	efficiency	D(low)		(Total)	(Total)	
		(mGy)	(mGy)	(mGy)	(mSv)	
300	0.754	3.28/	0.601	3.43	9.56	2.78
		2.83				
100	0.582	2.95/	0.601	3.20	9.33	2.91
		2.59				
TEPC				2.79	8.88	3.17

ISS/Shuttle TEPC Comparison-GCR

Expedition 10 Example

 NCRP 142, 2002 Equation 6.2 Q derived from Tissue Equivalent Proportional Counter (TEPC) if PNTD not utilized:

• SM-P327 Dose = 38.15 mGy

Q measured by TEPC = 2.82

H = 108 mSv for 193 day mission

Factors to consider:

Depth Dose

Quality Factors/Neutrons

Risø TL/OSL-DA-15C/D Reader

- OSL stimulation module: 49 Nichia Green Diodes (525 nm)
- Power at the sample of ~ 43mW/cm²
- Emission filter Hoya U-340 (7.5 mm thick)

Preliminary STS-114 Results: CPD

• Simplicity of OSL dot readout

STS-114 Luxel Results

The bulk etch B^* – the thickness removed by etching for one surface of the CR-39 plate, can be calculated by formula

$$B = \frac{(m_1 - m_2)T_2}{2m_2} (1 - \frac{pT_2}{2A})$$

where m_1 is the detector mass before etching, m_2 , the mass after etching, T_2 is the detector thickness after etching, p is the detector perimeter and A is the detector surface area.

The etch rate ratio S is calculated by Somogyi's formula (Somogyi, 1977)

$$S = \sqrt{1 + 4\left(\frac{a}{2B}\right)^2 / \left[1 - \left(\frac{b}{2B}\right)^2\right]^2}$$

where a and b are the major and minor axes respectively.

*Etching: NaOH (6.25 N, 60oC) for 48 hours, B = 27 μ m

LET calibration exposures for CR-39 (2004 – July 2005)

Institute	lon	Energy	LET			
		(MeV/n)	(keV/µm CR-39)			
NSRL (BNL) (Sept. 04)	Proton	1000	0.147			
	0	1000	9.39			
	Fe	1000	99.20			
HIMAC (March 05)	0	400	13.75			
	Ne	400	21.49			
	Ar	650	56.08			
	Fe	500	130.10			
	Xe	290	744.98			
	Не	150	1.54			
TAMU (March 05)	Proton	14, 10, 8, 6, 3	2.60, 3.43, 4.14, 5.25, 9.50			
		(Gev/n)				
BNL (July 05)	Si	0.3, 1, 3, 5, 10	49.19, 28.76, 25.73, 26.67, 28.81			
	Fe	3, 5, 10	88.74, 92.01, 99.37			
38						

STS-114 TEPC Location Results

CR-39 detectors were used for STS-114 mission, some preliminary results were obtained using JSC CR-39 LET calibration and is listed below:

Results Measured by TEPC and CR-39

Location: JSC-TEPC	Dose Rate (≥ 10 keV/μm water)	Dose Equivalent Rate (≥ 10 keV/μm water) (ICRP 60)	Quality Factor
	(μGy/day)	(μSv/day)	
TEPC	24.83	278.86	11.23
CR-39	23.81	291.00	12.22

Integral spectra of dose equivalent measured by TEPC and CR-39

STS-114 TEPC Results, full LET spectrum

	GCR			Trapped			Total		
	Dose Rate (µGy/day)	Dose Equivalent Rate (μSv/day)	Quality Factor	Dose Rate (µGy/day)	Dose Equivalent Rate (µSv/day)	Quality Factor	Dose Rate (µGy/day)	Dose Equivalent Rate (µSv/day)	Quality Factor
ICRP-60	94.502	302.276	3.20	46.975	93.240	1.98	141.477	395.516	2.80

Shuttle TEPC/Crewmember CR-39 Results

Preliminary Results of STS-114 from CR-39 Plates $(\geq 10 \text{ keV}/\mu\text{m water}, \text{ICRP 60})$

CR-39	Dose	Dose	Dose	Dose Equivalent	Q
Plate		Rate	Equivalent	Rate	
	(mGy)	(µGy/day)	(mSv)	(µSv/day)	
Near TEPC	0.3310	23.81	4.0449	291.00	12.22
Collins	0.3376	24.29	4.1659	299.71	12.34

Future Work

- Continued investigation of Optically Stimulated Luminescence (OSL) of Al2O3:C detectors, leading to use as primary low LET dosimeter
- Operational Use of Plastic Nuclear Track Detectors CR-39 to determine dose equivalent at surface of the astronaut directly
- STS-114 is first mission to have full complement of TLD/OSL/CR-39, analysis of track detectors, OSLD, and TLD underway