

Three dimensional determination of etch track parameters in plastic nuclear track detectors: findings on bulk etch rate and implications for dosimetry.

Rainer Facius, Tomasz Horwacik[#] DLR, Institute of Aerospace Medicine Division Radiation Biology

guest scientist

Summary and Conclusion

• Bulk etch rate in plastic detectors varies significantly

- during etch time (CR 39)
- locally by 10% to 25% (CR 39 and cellulose nitrate)

 Precision of dose equivalent measured thereby limited to perhaps 20% or more (neglecting other sources of error)

Historical background – motivation 2D measurement technique 3D measurement technique – experimental 3D measurement technique – theoretical analysis 3D measurements – accuracy/precision Local bulk layer data (cellulose nitrate, D1 mission) Local bulk layer data (CR 39, ISS mission/HIMAC) Global bulk layer data (CR 39, ISS/HIMAC, mechanical thickness) 2D – 3D comparisons (CR 39) Implications for dosimetry Puzzles (a few, for me)

Historical background – motivation

13th WRMISS

3-dimensional etch-cone measurements

Krakow, Sept. 07/2006

Background

BIOSTACK concept

Localization of particle tracks

in biological test organisms

Position and orientation of etch tracks in the detector system

13th WRMISS

3-dimensional etch-cone measurements

Krakow, Sept. 07/2006

2D measurement technique

13th WRMISS

3-dimensional etch-cone measurements

Krakow, Sept. 07/2006

Principle

Relative etch rate $R = v_t / v_b = 1 / \sin\theta$

 $R = \sqrt{\{ (2A/H)^2 / [1-(B/H)^2]^2 + 1 \}}$ A, B: semi- major, minor ellipse axis H: bulk etch layer = const. **in space and time !**

STRAHLEN

BIOLOGIE

HIMAC-2007 calibration curve, LET(R)

Institute of

Aerospace Medicine

DLR

3D measurement technique experimental

13th WRMISS

3-dimensional etch-cone measurements

Krakow, Sept. 07/2006 | 12

Microscope stage with linear position encoders on three axes (0.1 μ m)

13th WRMISS

3-dimensional etch-cone measurements

Krakow, Sept. 07/2006 13

Geometry of etch track types assigned for measurement program

Geometry of etch track type 1 in the track system, T

Parameters defining the size of etch tracks type 1

Measurement points for etch tracks type 1

Co-ordinates in the track system, T, of track measuring points for type 1 tracks

Point No.	X _{T,i}	Y _{T,i}	Z _{T,i}
1	-A	0	0
2	0	- B	0
3	0	+ B	0
4	+A	0	0
5	l _t	0	$-(l_t - x_c) * tg(\delta)$

Co-ordinates in the track system, T, of track measuring points for type 3 tracks

Point No.	X _{T,i}	Y _{T,i}	Z _{T,i}
1	-A	0	0
2	0	-B	0
3	0	+ B	0
4	+A	0	0
5	l _t	0	$-(l_t - x_c) * tg(\delta)$
6	lu	0	$-(l_u - x_c) * tg(\delta)$
7	l _d	0	$-(l_d - A' - 2x_c) * tg(\delta)$

13th WRMISS

Measurement points for etch tracks type 4

Co-ordinates in the track system, T, of track measuring points for type 4 tracks

Point No.	X _{T,i}	Y _{T,i}	Z _{T,i}
1	-A	0	0
2	0	-B	0
3	0	+ B	0
4	+A	0	0
5	l _t	-b	$-(l_t - x_c) * tg(\delta)$
6	l _t	+b	$-(l_t - x_c) * tg(\delta)$
7	l _d	0	$-(l_d - A' - 2x_c) * tg(\delta)$

Co-ordinates in the track system, T, of track measuring points for type 5 tracks

Point No.	X _{T,i}	Y _{T,i}	Z _{T,i}
1	-A	0	0
2	0	-B	0
3	0	+B	0
4	+A	0	0
5	l _t	-r _k	$-(\mathbf{l}_t - \mathbf{x}_c) * tg(\delta)$
6	l	+r _k	$-(\mathbf{l}_t - \mathbf{x}_c) * tg(\delta)$
7	l _t +r _k	0	$-(\mathbf{l}_t - \mathbf{x}_c) * tg(\delta)$

3D measurement technique theoretical analysis

13th WRMISS

3-dimensional etch-cone measurements

Krakow, Sept. 07/2006 25

Transformation of co-ordinates from the track system, T, into the detector system, F.

$$\begin{split} \mathbf{X}_{\mathrm{F},i} &= \mathbf{X}_{\mathrm{T},i} \cos(\alpha) - \mathbf{Y}_{\mathrm{T},i} \sin(\alpha) + \mathbf{X}_{0} \\ \mathbf{Y}_{\mathrm{F},i} &= \mathbf{X}_{\mathrm{T},i} \sin(\alpha) + \mathbf{Y}_{\mathrm{T},i} \cos(\alpha) + \mathbf{Y}_{0} \\ \mathbf{Z}_{\mathrm{F},i} &= \mathbf{Z}_{\mathrm{T},i} & + \mathbf{Z}_{0} \end{split}$$

13th WRMISS3-dimensional etch-cone measurementsKrakow, Sept. 07/200626

Co-ordinates in detector system, F, of track measuring points for type 1 tracks

Point No.	X _{F,i}	Y _{F,i}	$\mathbf{Z}_{\mathrm{F,i}}$
1	$x_0 - A * \cos(\alpha)$	$y_0 - A * sin(\alpha)$	Z ₀
2	$x_0 + B * sin(\alpha)$	$y_0 - B * \cos(\alpha)$	z ₀
3	$x_0 - B * sin(\alpha)$	$y_0 + B * cos(\alpha)$	Z ₀
4	$x_0 + A * \cos(\alpha)$	$y_0 + A * sin(\alpha)$	z ₀
5	$x_0 + l_t * \cos(\alpha)$	$y_0 + l_t * sin(\alpha)$	$z_0 - (l_t - x_c) * tg(\delta)$

Free parameters for track type 1:

$$x_0, y_0, z_0, \alpha; A, B, \delta, x_c; I_t$$

Co-ordinates in detector system, F, of track measuring points for type 3 tracks

Point No.	X _{F,i}	Y _{F,i}	Z _{F,i}
1	$x_0 - A * \cos(\alpha)$	$y_0 - A * \sin(\alpha)$	Z ₀
2	$x_0 + B * sin(\alpha)$	$y_0 - B * \cos(\alpha)$	Z ₀
3	$x_0 - B * sin(\alpha)$	$y_0 + B * \cos(\alpha)$	Z ₀
4	$x_0 + A * \cos(\alpha)$	$y_0 + A * sin(\alpha)$	Z ₀
5	$x_0 + l_t * \cos(\alpha)$	$y_0 + l_t * \sin(\alpha)$	$z_0 - (l_t - x_c) * tg(\delta)$
6	$x_0 + l_u * \cos(\alpha)$	$y_0 + l_u * \sin(\alpha)$	$z_0 - (l_u - x_c) * tg(\delta)$
7	$x_0 + l_d * \cos(\alpha)$	$y_0 + l_d * \sin(\alpha)$	$z_0 - (l_d - A' - 2x_c) * tg(\delta)$

Free parameters for track type 3:

$$x_{0}, y_{0}, z_{0}, \alpha; A, B, \delta, x_{c}; I_{t}, I_{u}, I_{d}, A'$$

Co-ordinates in detector system, F, of track measuring points for type 4 tracks

Point No.	X _{F,i}	Y _{F,i}	Z _{F,i}
1	$x_0 - A * \cos(\alpha)$	$y_0 - A * sin(\alpha)$	z ₀
2	$x_0 + B * sin(\alpha)$	$y_0 - B * \cos(\alpha)$	z ₀
3	$x_0 - B * sin(\alpha)$	$y_0 + B * \cos(\alpha)$	z ₀
4	$x_0 + A * \cos(\alpha)$	$y_0 + A * sin(\alpha)$	z ₀
5	$x_0 + l_t * cos(\alpha) + b * sin(\alpha)$	$y_0 + l_t * sin(\alpha) - b * cos(\alpha)$	$z_0 - (l_t - x_c) * tg(\delta)$
6	$x_0 + l_t * cos(\alpha) - b * sin(\alpha)$	$y_0 + l_t * sin(\alpha) + b * cos(\alpha)$	$z_0 - (l_t - x_c) * tg(\delta)$
7	$x_0 + l_d * \cos(\alpha)$	$y_0 + l_d * sin(\alpha)$	$z_0 - (l_d - A' - 2x_c) * tg(\delta)$

Free parameters for track type 4:

$$x_0$$
, y_0 , z_0 , α ; A, B, δ , x_c ; I_t , b, I_d , A'

Co-ordinates in detector system, F, of track measuring points for type 5 tracks

Point No.	$\mathbf{X}_{\mathbf{F},\mathbf{i}}$	Y _{F,i}	$Z_{F,i}$
1	$x_0 - A * \cos(\alpha)$	$y_0 - A * sin(\alpha)$	z ₀
2	$x_0 + B * sin(\alpha)$	$y_0 - B * \cos(\alpha)$	z ₀
3	$x_0 - B * sin(\alpha)$	$y_0 + B * \cos(\alpha)$	z ₀
4	$x_0 + A * \cos(\alpha)$	$y_0 + A * sin(\alpha)$	z ₀
5	$x_0 + l_t * \cos(\alpha) + r_k * \sin(\alpha)$	$y_0 + l_t * sin(\alpha) - r_k * cos(\alpha)$	$z_0 - (l_t - x_c) * tg(\delta)$
6	$x_0 + l_t * \cos(\alpha) - r_k * \sin(\alpha)$	$y_0 + l_t * sin(\alpha) + r_k * cos(\alpha)$	$z_0 - (l_t - x_c) * tg(\delta)$
7	$x_0 + (l_t + r_k) * \cos(\alpha)$	$y_0 + (l_t + r_k) * sin(\alpha)$	$z_0 - (l_t - x_c) * tg(\delta)$

Free parameters for track type 5:

$$x_0, y_0, z_0, \alpha; A, B, \delta, x_c; I_t, r_k$$

Parameters are sought for the maximum of the likelihood function Λ , resp. its logarithm.

 $\begin{aligned} -2^* \log \Lambda &= & nm*\log 2\pi + nk*\log V_{xy} + n(m-k)*\log V_z \\ &+ {}_{a=1}\sum^k (M_{aa}/V_{xy}) + {}_{a=k+1}\sum^m (M_{aa}/V_z) \end{aligned}$

$$\begin{split} V_{xy} &\cong (1/nk) \ast_{a=1} \sum^{k} (M_{aa}); & \text{variance of } x, y \text{ measurement} \\ V_z &\cong (1/n(m-k)) \ast_{a=k+1} \sum^{m} (M_{aa}); \text{variance of } z \text{ measurement} \end{split}$$

"Objective function" $\Psi(\mathbf{M})$ is minimized

 $\Psi(\mathbf{M}) = [nk*log(_{a=1}\sum^{k}(\mathbf{M}_{aa})) + n(m-k)*log(_{a=k+1}\sum^{m}(\mathbf{M}_{aa}))]/2$

Matrix of moments M

M(Θ) = $\varepsilon \varepsilon^{T}$ vector of residuals/errors ε

 $\boldsymbol{\varepsilon}^{\top} = (X_1(\boldsymbol{\Theta}) - x_1, \dots, X_n(\boldsymbol{\Theta}) - x_n, Y_1(\boldsymbol{\Theta}) - y_1, \dots, Y_n(\boldsymbol{\Theta}) - y_n, Z_1(\boldsymbol{\Theta}) - z_1, \dots, Z_n(\boldsymbol{\Theta}) - z_n)$

$X_i(\Theta), Y_i(\Theta), Z_i(\Theta) = model coordinates$

x_i, y_i, z_i = measured coordinates

i=1...n

parameter vectors Θ

$$\begin{split} & \Theta = (\mathbf{x}_{0}, \, \mathbf{y}_{0}, \, \mathbf{z}_{0}, \, \alpha; \, \mathbf{A}, \, \mathbf{B}, \, \delta, \, \mathbf{x}_{c}; \, \mathbf{I}_{t}); & \text{type 1} \\ & \Theta = (\mathbf{x}_{0}, \, \mathbf{y}_{0}, \, \mathbf{z}_{0}, \, \alpha; \, \mathbf{A}, \, \mathbf{B}, \, \delta, \, \mathbf{x}_{c}; \, \mathbf{I}_{t}, \, \mathbf{I}_{u}, \, \mathbf{I}_{d}, \, \mathbf{A}'); & \text{type 3} \\ & \Theta = (\mathbf{x}_{0}, \, \mathbf{y}_{0}, \, \mathbf{z}_{0}, \, \alpha; \, \mathbf{A}, \, \mathbf{B}, \, \delta, \, \mathbf{x}_{c}; \, \mathbf{I}_{t}, \, \mathbf{b}, \, \mathbf{I}_{d}, \, \mathbf{A}'); & \text{type 4} \\ & \Theta = (\mathbf{x}_{0}, \, \mathbf{y}_{0}, \, \mathbf{z}_{0}, \, \alpha; \, \mathbf{A}, \, \mathbf{B}, \, \delta, \, \mathbf{x}_{c}; \, \mathbf{I}_{t}, \, \mathbf{r}_{k} \,); & \text{type 5} \end{split}$$

constraints for parameters

linear: $A \ge B > 0; \quad x_c > 0; \qquad B > r_k \ge 0; \quad B > b \ge 0$

nonlinear 'constraint' $A/B = \cos\theta / \sqrt{(\cos^2\theta - \cos^2\delta)}$

leads to the Langrange equation:

N₁(A, B, δ, θ) = (A²–B²)(1+tg²δ)–A²(1+tg²θ) = 0

Determination of cone angle, θ , from track parameters

 $tg(\theta) = \{ \sqrt{[B^{2}(I_{t}-w)^{2} - (A^{2}-B^{2})(B^{2}-w^{2})] - w^{2}(I_{t}-w)} \} /$ / [(I_{t}-w)^{2} - (A^{2}-B^{2})] * $\sqrt{(1-B^{2}/A^{2})}$ $\theta > 0$ w = b for type 4; w = r_k for type 5; w=0 otherwise

Determination of local bulk layer, H, from track parameters

$$H = A * (sin\delta + sin\theta) / cos\theta$$

Ideal etch cone relations

13th WRMISS

3D measurements – accuracy/precision

13th WRMISS

3-dimensional etch-cone measurements

Screen shot of type 1 measurement with schematic

Screen shot of type 3 measurement with schematic

Institute of

measurements (cellulose nitrate)

STRAHLEN

Institute of

Precision of co-ordinate measurements; 3D vs. 2D (CR 39, standard deviation of residuals)

Precision of ellipse semi axes - 3D (CR 39, standard deviation of repetitions)

local bulk layer data (cellulose nitrate, D1 mission)

13th WRMISS

3-dimensional etch-cone measurements

Summary of local bulk layer measurements (CN)

local bulk layer data (CR 39, ISS mission/HIMAC)

13th WRMISS

3-dimensional etch-cone measurements

Local bulk layer distributions short etch (CR 39)

STRAHLEN

BIOLOGIE

Local bulk layer distributions long etch (CR39)

STRAHLEN

Local bulk layer distributions Aerospace Medicine long etch, accelerator only (CR 39)

stitute of

DLR

53

STRAHLEN

global bulk layer data

(CR 39, ISS mission/HIMAC mechanical measurement)

Global etch rate velocities short etch versus long etch data (CR 39)

2D – 3D comparisons (CR 39)

13th WRMISS

3-dimensional etch-cone measurements

Comparison excess etch rate and LET long etch (168h) CR 39, accelerator calibration data

Comparison excess etch rate and LET short etch (36h) CR 39, accelerator calibration data

13th WRMISS

Comparison excess etch rate and LET short etch (36h) CR 39, ISS exposure data

13th WRMISS

3-dimensional etch-cone measurements

Implications for dosimetry

13th WRMISS

3-dimensional etch-cone measurements

Calibration function LET(R)

Sensitivity analysis ΔR on ΔQ

Puzzles (a few, and for me)

13th WRMISS

3-dimensional etch-cone measurements

13th WRMISS

3-dimensional etch-cone measurements

Summary and Conclusion

• Bulk etch rate in plastic detectors varies significantly

- during etch time (CR 39)
- locally by 10% to 25% (CR 39 and cellulose nitrate)

 Precision of dose equivalent measured thereby limited to perhaps 20% or more (neglecting other sources of error)

Historical background - motivation 2D measure 3D measure 3D measure 3D measure Local bulk la 10 Local bulk la Global bulk 2D – 3D cor Implications for dosimetry Puzzles (a few, for me)

ysis

cal thickness)

13th WRMISS