Studies of influence of various factors on dose quantities measured with CR-39 detectors onboard spacecraft

<u>I. Jadrníčková^{1,2}</u>, N. Yasuda¹, H. Kawashima¹, M. Kurano¹, S. Kodaira^{1,3}, Y. Uchihori¹, H. Kitamura¹, Yu. Akatov⁴, V. Shurshakov⁴, I. Kobayashi⁵, Y. Koguchi⁶, F. Spurný²

¹ National Institute of Radiological Sciences, Chiba, Japan
 ² Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Prague, Czech Rep.
 ³ Research Institute for Sciences and Engineering, Waseda University, Tokyo, Japan
 ⁴ Institute for Biomedical Problems, Moscow, Russia
 ⁵ Nagase Landauer, Itd., Nihombashi, Tokyo, Japan
 ⁶ Chiyoda Technol Corporation, Oarai-machi, Ibaraki, Japan

Introduction

- TLD + CR-39 PNTD measurement of LET spectra, absorbed dose, and dose equivalent onboard of spacecraft
- differences among different laboratories, especially for PNTD
- variety of possible reasons
 - different material
 - calibration
 - etching conditions
 - selection and measurement of etched pits
 - calculation method, corrections (dip angle dependence)
 - personal skills and experience

Outline

- discussion of some possible reasons
 - measurement and selection of etched pits (all, exclusion of overetched)
 - inhomogeneity of radiation within the detector
 - personal dependence of the measurement and selection of etched pits

Methodology / measurements

- detector type: HARZLAS TD-1 (Nagase Landauer ltd., Japan), 0.9 mm thick
- exposed onboard of ISS (various experiments MTR I, MTR III, BRADOS II)
- etching condition: 7N NaOH, 70°C
- bulk etch: $17 21 \,\mu m$
- optical microscope → captured image → analysis using software HspFit
- to study the influence of certain effect, the same image was analyzed → elimination of the influence of other factors

Measurement and selection of etched pits I

- measurement of CR-39 rather difficult task
- when particles stop in the layer removed by etching, the pits can become rounded (overetched) → modifications of LET

E. Benton, 2006

Measurement and selection of etched pits II

- evaluation was performed in two "modes"
 - 1 measurement of all pits
 - 2 with the exclusion of overetched ones
- measured area: 3.3 mm² (more than 1000 pits)
- number of analyzed detectors: 32 (MTR-R I, B \sim 17.7 μ m)

Measurement and selection of etched pits – results and discussion I

differential fluence spectra – differences for higher-LET region

Measurement and selection of etched pits – results and discussion II

Overetched tracks $-13 \pm 5\%$ from all tracks $-18 \pm 6\%$ in D $-23 \pm 6\%$ in H

Homogeneity of reading I

- 5 different points on the detector's area (3.5 x 2 cm)
- measured area: 2.94 mm²

Homogeneity of reading II

• difference from average $- \sim 15 \pm 6\%$ for D, $\sim 10 \pm 4\%$ for H

Position	Number of measured pits	Dose rate [µGy/day]	Dose eq. rate [µSv/day]
1	822	18.2 ± 0.8	279 ± 15
2	486	13.3 ± 0.7	238 ± 15
3	795	17.9 ± 0.8	274 ± 15
4	428	12.0 ± 0.7	210 ± 14
5	719	16.9 ± 0.7	275 ± 15
average		15.7 ± 2.8	255 ± 30

Personal dependence Comparison – measurement of the same detector

- the same area of the detector measured by the same person at two different times
- measured area: $\sim 4 \text{ mm}^2$

	Number of pits	D [mGy]	D _{LET>10} [mGy]	H [mSv]	$H_{LET>10}$ [mSv]
1	927	6.6 ± 0.3	5.9 ± 0.3	88.3 ± 5.2	87.6 ± 5.2
2	766	6.2 ± 0.3	5.8 ± 0.3	89.7 ± 5.4	89.3 ± 5.4

difference – $\sim 6 (2)\%$ for D, 2 (2)% for H

Personal dependence Comparison – 2 persons

Detector	D [mGy]		H [mSy]	
	person 1	person 2	person 1	person 2
1	5.76 ± 0.24	8.07 ±0.27	71.9 ± 4.5	89.0 ± 4.8
2	7.53 ± 0.28	7.75 ± 0.27	93.2 ± 5.4	85.6 ± 4.9
3	5.97 ± 0.25	7.39 ± 0.26	73.1 ± 4.6	86.0 ± 4.8
4	11.75 ± 0.40	9.51 ± 0.32	155.8 ± 7.5	113.5 ± 6.1
5	8.52 ± 0.34	9.59 ± 0.34	120.5 ± 6.6	131.5 ± 6.6

LET ≥ 10 keV/µm - 12 ± 7% in D - 12 ± 7% in H

(ΔX) calculated as $(X_1 - X_2)/((X_1 + X_2)/2)$

Image: Image:

• several sources for discrepancies

	ΔD _{max} [%]	ΔD _{av} [%]	ΔH _{max} [%]	ΔH _{av} [%]
Homogeneity	41	15	28	10
Selection of pits	30	18	35	23
Persons	33	13	28	15
Etching	120	43	141	54
Angular correction	19		1	1

• (ΔX_{max}) calculated as $(X_{max}-X_{min})/((X_{max}+X_{min})/2)$

Conclusion II

• total averaged uncertainty assumption: all errors are independent

$$\Delta X = \sqrt{\sum_{i} \Delta X_{i}^{2}}$$

~ 54% (33% without etching) for D ~ 62% (29%) for H

• the most critical – etching and selection of pits

M

- What etched pits should be measured?
 - to define criteria how to select and measure etched pits
- What etching condition should be used?
 - smaller bulk etch → short-range high-LET particles
 - larger bulk etch \rightarrow lower-LET particles
- Which materials have angular dependence? (it is known for TD-1, any others?)

Future work

- better statistics
- more studies are needed (→ CR-39 ICCHIBAN, SI3)
- to inter-compare the results → guideline for evaluation of CR-39 PNTD ?