Variation of dose quantities from CR-39 detectors onboard ISS Russian segment: etching and angular correction

S. Kodaira¹, M. Sato², N. Yasuda¹, Y. Uchihori¹,
H. Kitamura¹, M. Kurano¹, H. Kawashima¹,
I. Jadrnickova^{1,3}, F. Spurny³, I. Kobayashi⁴,
Y. Koguchi⁵, Yu. Akatov⁶, and V. Shurshakov⁶

1) NIRS, 2) Waseda Univ.

3) Academy of Sciences of the Czech Republic

4) Nagase Landauar Ltd.

5) Chiyoda Technol Corporation

6) Institute for Biomedical Problems

Background

Passive dosimeter for radiation monitoring

→ CR-39 (LET \geq 10keV/ μ m)+TLD(LET<10keV/ μ m)

Current status of CR-39 measurement

The results of LET spectrum and dose obtained from CR-39 are quite different among Institutions

- → ① Etching level
 - Multi level etching ("short etching"+" long etching")
 - Single etching
- → ② Incident angular dependence on track registration sensitivity for some CR-39 material
 - Corrected LET spectrum as a function of incident angle (ref. Doke et al., RM, 28 (1997) 445)
 - Non corrected

① Etching level

Missing of contribution due to very high LET particle with short range in CR-39.

- How different in dose amount is caused by etching level ?
- For the combination of "short" & "long" etching, what good choice is etching level ?

② Incident angular dependence on track sensitivity
 It is known that track registration sensitivity depends on incident angle (at least CR-39 made in Japan).
 > Angular correction on sensitivity is probably needed
 > How different in dose amount is caused among Non-corrected & Corrected for LET spectrum?

Objectives

On CR-39 analysis for space dosimetry:

①Verify the variation of LET spectra by several bulk etch conditions (multi-step etching) at the same region

②Verify the correction methods of incident angle dependence on track registration sensitivity

Sample used in this work

- BRADOS-II experiment (IBMP+NIRS)
 - Russian segments in ISS
 - 269 days exposure (Jan. 29, 2004 ~ Oct. 24, 2004)
- HARZLAS TD-1 detector (single layer located at bottom of a dosimeter package)

	Etchir	ig procedure & Imag	ge	а	nalysis			
	Multi-step etching (same sample): 7N NaOH 70°C							
l	Etching time [hr]	Amount of bulk etch [µm]		60	$P_{-2} AT A 2$			
	4	5.7	[mŋ]	50	B=2.41-4.2			
	8	14.4	etch	40				
	12	24.3	bulk	30				
	16	33.6	unt of	20				
	20	42.8	Amo	10				
	24	53.1		0				
			_	0	5 10 15 20 25			

□ Track image scan: HSP-1000

- Scan area: 2.5 × 2.5 mm² (same region)
- Resolution: 0.35 μ m/pix (x20 lens)

Track analysis: PitFit software

- All images are scanned by manual
- Reject stopping event (e.g. Round-shape track)

Etching time [hr]

LET spectra for each etching level

 \checkmark In order to estimate dose more accurately, the combination of short and long etching is needed.

✓ What good choice is short & long etching level ?
 → Tests some patterns to choose good combination

] Absorbed & dose equivalent rates (LET \geq 10 keV/µm) by etching level combination

[Case] short etching: 4h (B=5.7) + long etching: Any

Т	В	Absorbed dose	Dose equivalent	Mean
[hr]	[µm]	[µGy/day]	[µSv/day]	QF
4+12	5.7+24.3	27.5 ± 1.1	430.6 ± 18.7	15.7
4+16	5.7+33.6	27.3 ± 1.1	427.9 ± 18.6	15.7
4+20	5.7+42.8	26.9 ± 1.1	426.1 ± 18.6	15.8
4+24	5.7+53.1	26.7 ± 1.1	425.3 ± 18.6	15.9

• Difference for mean absorbed dose: $27.1_{-1.5\%}^{+1.5\%}$ [μ Gy/day]

• Difference for mean dose equivalent: $427.5^{+0.7\%}_{-0.5\%}$ [μ Sv/day]

The difference in dose amount among each etching level combination is very small !

Incident angular dependence on track registration sensitivity

Methodology of angular dependence correction

Yasuda et al., RM, 43 (2008) S269

Applied to "<u>4+12 hr (B=5.7+24.3µm) data</u>"

Comparison of absorbed & dose equivalent rates (LET \geq 10keV/ μ m) by angular correction

<u>4+12 hr (B=5.7+24.3µm) data</u>

	Absorbed dose [µGy/day]	Dose equivalent [µSv/day]	Mean QF
Non-corrected	27.5 ± 1.1	430.6 ± 18.7	15.7
Corrected(α =3.47)	28.8 ± 1.1	442.0 ± 18.9	15.4
Corrected(α =15.76)	33.3 ± 1.2	482.5 ± 20.0	14.5

- Difference of absorbed dose of α=15.76 correction for Non-corrected case: +21.1%
- Difference of dose equivalent of α=15.76 correction for Non-corrected case: +12.1%

It means that large difference should be caused by angular dependence on track registration sensitivity

Summary

Verified the variation of LET spectra and dose quantities in TD-1 detector for:

① Etching level

- Maximum difference of absorbed → dose rate among B=5.7~53.1µm
- Combination result (B=5.7+any)

→ High LET component dominantly effects in dose Combination method of short & long etching is very important to derive accurate LET spectrum

② Angular correction

 Maximum difference of absorbed dose rate among non-corrected and corrected: <u>+21.1%</u>
 If we use CR-39 material with angular dependence, its angular correction is also important factor

Backup Charts

	Absorbed & dose equivalent rates (LET ≥						
	$10 \text{ keV/}\mu\text{m}$) by etching level combination						
Т	В	Absorbed dose	Dose equivalent	Mean			
[hr]	[µm]	[µGy/day]	[µSv/day]	QF			
4+12	5.7+24.3	27.5 ± 1.1	430.6 ± 18.7	15.7			
4+16	5.7+33.6	27.3 ± 1.1	427.9 ± 18.6	15.7			
4+20	5.7+42.8	26.9 ± 1.1	426.1 ± 18.6	15.8			
4+24	5.7+53.1	26.7 ± 1.1	425.3 ± 18.6	15.9			
8+16	14.4+33.6	15.4 ± 0.7	235.2 ± 12.3	15.3			
8+20	14.4+42.8	15.2 ± 0.7	236.4 ± 12.4	15.5			
8+24	14.4+53.1	15.1 ± 0.7	234.0 ± 12.3	15.5			

 Dose obtained by using B=5.7 μm is ~1.5 times larger than the cause of using B=14.4 μm.

 Results of dose using same short etching level are consistently within error.

Summary

Verified the variation of LET spectra and dose quantities in TD-1 detector for:

① Etching level

- Maximum difference of absorbed \rightarrow 12.2^{+51.8%}_{-47.7%} [μ Gy/day] dose rate among B=5.7~53.1 μ m
- Combination result (B=5.7+any) \rightarrow 27.1^{+1.5%}_{-1.5%} [μ Gy/day]
 - → High LET component dominantly effects in dose
- Combination method of short & long etching is very important to derive accurate LET spectrum

② Angular correction

- Maximum difference of absorbed dose rate among non-corrected and corrected: +21.1%
- If we use CR-39 material with angular dependence, its angular correction is also important factor