

Light Flashes in space: does low LET radiation have effects on brain functions?

L. Narici^a, A. Ciccotelli^a, L. Di Fino^a, M. Larosa^a, C. La Tessa^a, P. Picozza^a, A. Rinaldi^a, V. Zaconte^a, S. Carozzo^b, W.G. Sannita^{bc}

a INFN and University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome, Italy b Neurophysiopathology-DISM, University of Genoa, Genoa, Italy; c Department of Psychiatry, SUNY, Stoony Brook, NY, USA

Content

- ALTEA program
 - results from ALTEA CNSM
- a model for Light Flash
- the low LET possibility: fro

from CNSM ..

to MICE

to in vitro studies

also a re-thinking of old results

conclusions

ALTEA: the international team

+ others joining in

WRMISS September 2008 Krakow, Poland

Zampa N.

Zapp N.

Peachev N.S.

Petrov V.P.

Picozza P.

DePascale M.P.

Di Fino L.

Ferrari A.

ALTEA data acquisition - status and perspectives

 \approx 1 year of DOSI data + 7 CNSM

Early 2009:

DOSI ops up again

≈ 2010:

Shield survey shield CNSM

ALTEA reflight

ALTEA2

CNSM protocol:

- the astronaut wears the EEG cap
- slides into the detector
- relaxes during the stimulation
- signals the LF with the PB

• The LF rate - 1

Astronaut	LF	Duration (min)	Mean interval between LF(min)			
CF	12	58	5			
MLA	4	65	16			
SW	1	18				
MLA	0	63				
SW	1	61				
MLA	1	62				
MLA	1	87*				
TOTAL	20	414	21			
* passage	* passage in the SAA					

• The LF rate - 2: the geographical distribution

• The LF rate - 3 - Comparison with previous results

Mission	Mean Time between LF (min)	Approx Min – Max Time between LF (min)		
Apollo	4.3	1.3 - 8.6		
Skylab	0.6	1.1 - 4.4 { 3.8 s in SAA }		
ASTP	2.2	0.8 - 6.0		
MIR (SilEye)	6.8	3 - 13		
ISS Pirs (Alteino)	10.5	6.4 - 22		
ISS USLab (ALTEA)	20.7	5 - > 60		
Rate lower than expe • dark adaptation? • shielding? • comfort?	ected			

• ion counting in the eyes

• first measurement of the charged radiation in the eyes in space

• discriminating the radiation in the right eye, just before PB - 1

Example: astronaut CF

Time from the pressure of the Pushbutton [at t = 0 s] (s)

Ions detected by the ALTEA detector in the 2.5 s prior the pressure of the pushbutton

• discriminating the radiation in the right eye, just before PB - 2

In red the ions traveling through the right eye

• the electrophysiological candidates

We found three candidates from the retinal responses

ratio of eye acceptance to SDS acceptance is ≈ 6.3 we expect about 3-4 candidates

• comparison with MICE results

$$= 10^{-3} \text{ mean efficiency}$$

$$= 10^{-3} \text{ mean efficiency$$

(Sannita et al., Neurosci. Lett. 2007)

..we may attempt a morphology comparison:

• measuring the radiation in the right eye, before PB

All ions are low LET

• All ions in the 2 s before the PB, for all	<let> in SDU keV/µm</let>	estim versus	estim LET in eye keV/µm	
Sessions	4,3	in	≈6	
• These are the ions with	2,9	-	2,9	
the shown possible electrophysiological	2,9	-	2,9	
counterparts				

• our measurements show that low LET and low Z can induce LF

Is this an indication that LET and Z do not play a major role? we see low LET and low Z just as due to the abundances of these ions..?

Or can be also suggested that LET and Z may play a role ..? low LET and Z may be more favorable for generating LF?

We recently proposed a model which could help in providing suggestions ..

Experimental model for retinal interaction

The model

- is in agreement with in vitro tests
- is supported by the order o magnitude of the LF efficiency as measured in space and on ground (\approx geometrical cross section of portion of the retina)
- may help explaining the interindividual variability (concentration of antioxidant in the eyes, depending on stress, diet, etc)
- describes a "signal" for a radical excess in the retina

Activity *flow* after the ion hit

• one of the electrophysiological candidates

Measured Light Flashes rates in space during 40 yrs

Low LET & low Z - 2

- a possible model
 - High LET and high Z produce a higher concentration of radicals

however

• Radicals can recombine before they diffuse

SO

• Effects may have an inverse LET relation

In our case there may be two competing requests:

i) enough radicals to "reach" the Rods before being quenchedii) .. not that many to avoid recombination before they diffuse

... how does this inverse LET/Z hint agree with previous space and ground findings?

Low LET & low Z - 3

• only three experiments in space able to suggest candidates

Low LET & low Z - 4

• how does ALTEA compare with previous measurements?

mission	number	z				
Apollo (ALFMED) MIR (SilEye2)	2 8:	> 8				
	3	2				
	2	2-3				
	2	8				
	1	≈ 24				
ISS (ALTEA)	3	1-3				

All the ions "candidates" as Light Flashes generators ever measured in space

More than 60% of all candidates have $Z \le 3!$

• what about ground experiments - 1?

Very extensive measurements in the 70's. They **leave open** suggestions for .. any LET or Z, for example:

 He 240 MeV
 40% 10/pulse
 Budinger et al 1972

 N 531 MeV/n
 10% 1/pulse
 McNulty et al 1972

 C 595 MeV/n
 10 - 66% 1 (or +)/pulse
 McNulty et al 1978

Also quite recently:

H 73 Mev Orsay - patients report LF

Using the same rationale ... 1

• what about ground experiments-2?

The Low LET rationale may explain the results in our MICE experiment

• what about ground experiments - 3?

• results of in vitro experiments using 12C to activate rhodopsine may be explained by the same rationale

Conclusion

• We provide the first measurement of the radiation impinging in the eye (and brain) of the astronauts

- We report retinal responses from radiation, in coincidence with LF
- LF appear generated by low LET and Z radiation

• There are several reasons to suggest that low LET and Z radiation may be at least equally able to generate LF than high LET and Z

• ... and this may have influence in the countermeasures design

FUTURE (for the existing set of data):

- improve analysis to more detailed nuclear discrimination
- study cortical responses
- improve the model(s) and provide risk assessment

Thank you for your attention

_

• discriminating the radiation in the right eye, just before PB - 3

In red the ions traveling through the right eye

Time from the pressure of the Pushbutton [at t = 0 s] (s)

SilEye: an experiment on MIR - 6

• results: light flashes

Content

Time-cut	All time (48850s)			In LF time window (total: 116s)				
Eye-cut	All data		Track through eye		All data		Track through eye	
Event	Number	Rate (Hz)	Number	Rate (Hz)	Number	Rate (Hz)	Number	Rate (Hz)
Protons (p) Nuclei (N) Showers LF	115,508 858 4434 116	$\begin{array}{c} 2.50 \pm 0.01 \\ 0.0186 \pm 0.0006 \\ 0.0960 \pm 0.014 \\ 0.0024 \pm 0.0002 \end{array}$	59 414 479 	1.29 ± 0.005 0.0104 ± 0.0005 —	557 11 10 116	5.1 ± 0.2 0.10 ± 0.03 0.091 ± 0.029 1	8	$\begin{array}{c} 2.8 \pm 0.2 \\ 0.074 \pm 0.026 \\$
N/p Showers/p	0.00 0.03	74 ± 0.0002 84 ± 0.0006	0.00	81±0.0004	0.02 0.01	20 ± 0.006 18 ± 0.006	0.02	26 ± 0.009
				3 ions Z = 2 (He 2 ions Z ≈ 2-3 (2 ions Z ≈ 8 (O) 1 ion Z ≈ 24 (Ci	e) He or Li)) r)			

Table 4. Events in LF time windows and tracks through an eye (all data)

Linking ions and electrophysiology 4

The red eye retinal signal following the identified ions (in red). Pushbutton pressures in green.

Content

Measured Light Flashes rates in space

• Experiments aimed at studying the interaction mechanism(s) between radiation and CNS

• First experiment aimed at rhodopsin (at the start of the photoelectronic cascade in the visual pathway): activation (bleaching) of rhodopsin with different doses

Radiation activates rhodopsin

Linking ions and electrophysiology 8

Astronaut 2

ALTEA - shield

- ALTEA shield uses the ALTEA hardware with different holders and harness, it may be divided in 4 steps
- 1. Survey: survey the radiation environment within the habitable volume of the ISS
 - identification of hot and cold spots for CNS functional risks
 - validation of computer models that will provide description of the radiation flux, transport through the spacecrafts materials, shielding efficiency, interactions and dose deposited in the human brain.
- 2. Ground base tests of shielding materials (irradiation measurements & mice EEG measurements)
- 3. Shield: ISS-based tests of above shielding
- 4. CNSM with shielding

