

Physics/Accelerator Experiments Needed for Improving Particle/Heavy Ion Transport Codes

- What has been done and what should be done

L. Sihver^{1,2}, T. Sato³ and K. Gustafsson¹

¹Chalmers University of Technology (Sweden) ²Roanoke College (VA, USA) ³JAEA (Japan)

Chalmers

Outline

- What do we need to know ?
- What accelerator exp. have been performed ?
 - > Examples without claming to be complete in any way....
- What is still missing ?
 - Suggestions of what additional accelerator exp. should be performed ?
- Accelerator / Experimental requirements
- Summary and conclusions

What do we need to know?

- Radiation risk estimation for humans in space
 - Acute effects
 - > CNS damage, fatigue, skin ertihema, hair loss
 - > digestive problems, reduced level of white blood cells, emotional upsets, etc
 - Late effects
 - CNS damage, cataracts, cancer, cardiac, circulatory and digestive diseases
- Radiation effects on non-biological material
 - Shielding
 - SEU in electronic devices

13th WRMISS Workshop, Krakow, Polen

To make a correct risk assessment in space we first need to be able to simulate the external radiation environment

GCR

GCR

SP

Trapped particles

... then we need to simulate Dose Eq., etc. in critical organs and tissues in personnel <u>inside...</u>

... and outside a spacecraft !

13th WRMISS Workshop, Krakow, Polen

CREME96 and SPENVIS (Protons) altitude 400 km, solar maximum

Chalmers

CREME96 and SPENVIS (Iron) altitude 450 km

Range < 1 cm in Al

Chalmers

Largest risk / uncertainty SPE

Solar Flares

- Short lived, in the order of hours
- Rel. large fluxes of e⁻

Coronal mass ejection(CME)

- Longer lived, in the order of days
- Rel. large fluxes of p
- High particle fluxes → large doses
 Acute illness, death possible w/o shielding

Chalmers

Solar Particle Events (SPE)

28-Oct-2003: Whole body Dose Eq.: 4.9 ± 0.1 Sv !!

FLUKA calc: with courtesy to Dr. A. Ferrari

Chalmers

10¹² **Proton Fluence** in Large SEP Events Protons/cm² with Energy >E 10¹¹ (from Mewaldt, Oct 1989 ICRC2005) Aug 10¹⁰ 972 July 14 2000 10⁹ October 28 Feb 2003 1956 February, 1956 10⁸ August, 1972 October, 1989 Jan 20 July, 2000 2005 October, 2003 January, 2005 10⁷ 10 100 1000 Kinetic Energy (MeV) 20-Sep-2005: Whole body Dose Eq.: 1.83 ± 0.05 Sv !!

SPE 20 Sep 2005: open space skin doses after 1 g/cm² Al

Chalmers

Outer radiation fields

projectile

target

Interaction of the radiation with the spacecraft hulls, the body...

target fragment

Target Fragments

... lower charge than target ... high LET ... short ranges

projectile fragment

New mixed inner radiation field !

Projectile fragments

... lower charge than primaries ... mixed LET ... long ranges

... so we need to simulate the nuclear fragmentation process !!

....to do that we need a reliable nuclear reaction model !!

Semi-inclusive models

Exclusive models ("event generators")

- Do not reconstruct the collision
- + Fast
- No correlations
- Not so informative
- Example: NUCFRG2

Reconstruct collisions

- Slow
- + Preserve all correlations
- + Very informative
- Example: QMD

Deterministic codes

Stochastic MC codes

13th WRMISS Workshop, Krakow, Polen

To be able to estimate the dose equivalents to critical organs we also need to be able to transport the primary and the secondary particles...

Stochastic 3-D MC Codes

- Geant4
 - ✓ The Geant Collaboration
- > HETC-HEDS

✓ NASA Transport Consortium

- FLUKA
 - ✓ The Fluka Collaboration
- Shield-HIT
 - ✓ Sobolevsky et al.
- > PHITS
 - ✓ RIST, JAEA, Chalmers and GSI
- > MCNPX
 - ✓ Los Alamos National Lab.
- > MARS
 - ✓ Fermi National Accelerator Laboratory

Deterministic codes 1-D codes

- > HZTREN
 - ✓ NASA Langley Research Center
- > HIBRAC
 - ✓ Chalmers

13th WRMISS Workshop, Krakow, Polen

... and we need accelerator experiments to compare the calculations with!!

Chalmers

Measurements of H.I. fragmentation cross sections (thin targets) and yields behind shielding (thick targets) has mainly been performed at:

	Z _{proj} (max)	E _{proj} (MeV/u)	E _{proj} (⁵⁶ Fe) (MeV/u)
NSRL(BNL)	79	40-3000	100-1100
AGS (BNL)	79	600-30000	600-5000
HIMAC (NIRS-Chiba)	36	100-800	500
LLUPTC (Loma Linda)	1	40-250	

Neutron exposures have been performed at e.g.:

- Los Alamos National Laboratory Neutron Science Center (LANSCE), US
- Gustaf Werner Cyclotron at TSL, Sweden
- Secondary neutrons from protons on heavy targets at several facilities

Chalmers

Projectile fragmentation measurements performed by C. Zeitlin et al. at LBNL

- 1) Total charge changing cross sections
- 2) Partial charge changing cross sections

- Inclusive cross sections
 - > When no distinction is made as how the fragment is produced
- Fully depleted, unsegmented, Si detectors
- Detectors aligned on the beam axis, at $\approx 0^{\circ}$

Chalmers

Secondary Particles - LNBL fragmentation / charge changing cross section data base

- Extensive work
- Good Statistics, but "only"
 - > projectile fragments in forward direction
 - Charge changing detection
 - ✓ no *n* stripping
 - > "leading particles" detected (large θ_{acc})
 - \checkmark high charge (Z > Z_{beam} / 2)
 - \checkmark all charges resolved at small θ_{acc}

Chalmers

Primary Particles - LNBL fragmentation / charge changing cross section data base *

Targets: H, C, Al, Cu, Sn and Pb

lon	Energy (MeV/nucleon)							
⁵⁶ Fe	400	500	600	800	1,000	3,000	5,000	10,000
⁴⁸ ті					1,000			
⁴⁰ Ar	290	400	650					
³⁵ CI			650		1,000			
²⁸ Si	290	400	600	800	1,200	3,000	5,000	10,000
²⁴ Mg		400						
20 _{Ne}	290	400	600					
¹⁶ 0	290	400	600		1000			
¹⁴ N	290	400						
¹² C	290	400				3000	5000	10000
¹¹ B		400						
10 _B		400						
⁴ He	230							

^{*} With courtesy to C. Zeitlin, L. Heilbronn, S. Guetersloh, and J. Miller

Chalmers

First we calculated charge-changing cross sections with different methods using ITS

Exp. Performed by C. Zeitlin et al., LBNL (USA)

1. Simulate the whole experimental setup

A thin target p filled with y

3. T-product

13th WRMISS Workshop, Krakow, Polen

T-product used

Projectile fragmens separated from target fragments by their kin energy

13th WRMISS Workshop, Krakow, Polen

Bencharking against measurements and other codes

Benchmarked

- total & partial cross sections
- Transport Codes
 - > PHITS, FLUKA, MNCPX_HI, HETC-HEDS, NUCFRG2
- Targets: H, C, Al, Cu Sn and Pb
- Projectiles:

Chalmers

Chalmers

13th WRMISS Workshop, Krakow, Polen

Chalmers

Benchark Condtions

- Benchmarked
 - total & partial cross sections
- Transport Codes

No projectile lighter than si was No projectile lighter than si was benchmarking included in this benchmarking included in

13th WRMISS Workshop, Krakow, Polen

- > PHITS, FLUKA, MNCPH_HI, HETC-HEDS, NUCFRG2
- Targets: H, C, Al, Cu, Sn and Pb
- Projectiles:

lon				Energ	∨ (MeV/n	ucleon)		
⁵⁶ Fe	450	500	600	800	1,070	3,000	5,000	10,000
⁴⁸ ті					1,000			
⁴⁰ Ar	290	400	650					
³⁵ CI			650		1,000			
²⁸ Si	290	400	600	800	1,200	3,000	5,000	10,000
²⁴ Mg		400						
²⁰ Ne	290	400	600					
¹⁶ 0	290	400	600		1000			
¹⁴ N	290	400						
¹² C	290	400				3000	5000	10000
¹¹ B		400						
10 _B		400						
⁴ He	230							

Chalmers

No projectile lighter than Si was included !

Several calc. cross sections for light fragments = 0

13th WRMISS Workshop, Krakow, Polen

Total Reaction Cross Section

Chalmers

Total Reaction Cross Section

13th WRMISS Workshop, Krakow, Polen

Total Reaction Cross Section

13th WRMISS Workshop, Krakow, Polen

Projectile fragmentation and yields behind shielding measured with CR-39 PNTD Detectors

Exp. at HIMAC (NIRS, Japan), NSRL (BNL, USA) performed by E. Benton et al., N. Yasuda et al, M. Durante et al., etc

13th WRMISS Workshop, Krakow, Polen

Advantages:

- Spatial information close to 4π
 - > Fragments with Z=4 \Rightarrow Z_{proj} can be measured
 - Target fragmentation can be measured

Disadvantages:

- Bad" statistics
 - \succ ... but with a

"High-speed Imaging Microscope", imaging acquisition can be performed rather fast

HSP-1000

N in

Wide-range High-speed Imaging Microscope

Chalmers

In collaboration with NIRS, HSP-1000 is developed to realize highspeed image acquisition for a widerange of specimen clearly

N. Yasuda et al.

CR-39 detectors

Targets

Emulsion Cloud Chamber (ESS)

Can detect framgments up to around Z = 6

Chalmers

Target fragmentation

- Target fragments are recoil products with short ranges
 - ≽ ≈ 1 20 μm
 - > Same order of magnitude as biological cells
 - High LET Large local "biological damage"
- At high energies
 - > n interacts similar to p, so results from p induced target fragmentation is also relevant for high energetic n

Target fragmentation measured by CR-39 and emulsion !

Chalmers

Measurements of neutron energy spectra, at different angles, from thin / full-stop thick targets

Figure 3.2: General layout of the experimental setup on the SB2 beam line. The yellow tube is a He-filled tube that was used to reduce the background created by beam interactions in air. The picture was taken from the top of the beam dump.

13th WRMISS Workshop, Krakow, Polen

Thick target

Projectile	Energy [MeV/N]	Target	
⁴He	100, 180	C, Al, Cu, Pb	
¹² C	100, 180,400	C, Al, Cu, Pb	
²⁰ Ne	100, 180,400	C, Al, Cu, Pb	
²⁸ Si	800	C, Al, Cu, Pb	HIMAC by Kurosawa et al.
⁴⁰ Ar	400	C, Al, Cu, Pb	-
⁵⁶ Fe	400	C, Al, Cu, Pb	
¹²⁶ Xe	400	C, Al, Cu, Pb	
²⁰ Ne	337	C, A, Cu and U	BEVALAC by Schimmerling et al.
⁹³ Nb	272	Al, Nb	BEVALAC by Heilbronn et al.
⁹³ Nb	435	Nb 👂	Ē
⁴He	155	Al	NSRL by Heilbronn et al.
¹² C	155	Nb	
⁴He	160	Pb	SREL by Cecil
⁴ He	180	C, H ₂ O, steel, Pb	
¹² C	200	H ₂ O	GSI by Günzert-Marx et al.
¹² C	400	H ₂ O	GSI by Haettner et al.

Chalmers

Thin target

Projectile	Energy [MeV/N]	Target	
⁴ He ¹² C ²⁰ Ne	135 135 135	C, Poly, Al, Cu, Pb C, Poly, Al, Cu, Pb C, Poly, Al, Cu, Pb	RIKEN by Sato et al.
™Ar	55	C, Poly, Al, Cu, Pb	
120	200 400		
²⁰ No	290, 400		HIMAC Iwata at al
⁴⁰ Ar	400, 560	C, Cu, Pb	
⁴He	230	Li, C, CH ₂ , Al, Cu, Pb	
¹⁴ N	400	Li, C, CH ₂ , Al, Cu, Pb	
²⁸ Si	600	Li, C, CH ₂ , Al, Cu, Pb	HIMAC Heilbronn et al.
⁵⁶ Fe	500	Li, C, CH ₂ , Al, Cu, Pb	
⁸⁶ Kr	400	Li, C, CH ₂ , Al, Cu, Pb	
¹²⁶ Xe	400	Li, C, CH ₂ , Al, Cu, Pb	

Chalmers

Examples of tested shielding materials

LET and y-distributions, dose and dose equivalents after shielding **Detectors**

CR-39, TLD, TEPC, Liulin-4 Mobile Dosimetry Unit (MDU), and Si det.

Materials

Polyethylen SpectraShield Composite Fiberglass Composite pure Fiberglass pure Epoxy Al Graphite CompositesCarbon Foam Kapton (polyimide) Polyethersulfone Torlon (polyamide-imide) Polyvinyl chloride

Carbon Composite Kevlar (aramid) Composit Nextel Composite pure Kevlar Polyethylene H2O Carbon & Fiberglass Ultem (polyetherimide) Polysulfone Radel R (polyphenylsulfone) Teflon (polytetrafluoroethylene) Nylon (polyamide)

13th WRMISS Workshop, Krakow, Polen

Chalmers

. . . .

Still to be done for model & code verification:

- 1. Production and transport of delta rays
 - Lineal energy distributions before and after shielding
 - Clustering (multiply locally damage sites)
 - ✓ Large effects on subsequent chemistry, biochemistry, and the production of biologic lesions
 - More information about the low energy delta rays, close to the track core is needed !

Still to be done for model & code...:

- 2. Inclusive measurements
 - Missing σ_{frag} e.g. of 0.2 2 GeV/N He
 - > BNL/NSRL can not yet accelerate He, but soon..?
 - HIMAC goes only up to 230 MeV/N for He
 - Precise measurements of σ_{reac} (tot)
 - Including all final states

lon	Energy (MeV/nucleon)							
⁵⁶ Fe	400	500	600	800	1,000	3,000	5,000	10,000
⁴⁸ ті					1,000			
⁴⁰ Ar	290	400	650					
³⁵ CI			650		1,000			
²⁸ Si	290	400	600	800	1,200	3,000	5,000	10,000
²⁴ Mg		400						
²⁰ Ne	290	400	600					
¹⁶ 0	290	400	600		1000			
¹⁴ N	290	400						
¹² C	290	400				3000	5000	10000
¹¹ B		400						
10 _B		400						
⁴ He	230							

At solar minimum behind 2 cm Al shielding

13th WRMISS Workshop, Krakow, Polen

Still to be done for model & code verification (cont.):

- 3. Semi-inclusive measurements
- Cross Sections
 - \blacktriangleright Differential and double differential (E and Θ)
 - ✓ Projectile fragmentation
 - Production of evaporation residues and light fragments
 - ✓ Target fragmentation
- Multiplicity distributions of secondary particles
- Coincidence measurements
 - E.g. pions + projectile fragments

Chalmers

Still to be done for model & code verification (cont.):

4. Differential cross sections for ionization by heavy ions

- Energies below which electron capture become important
 - ✓ Representative of the slowing down of GCR in different material
- 5. LET, fluence, dose and dose eq. distributions after new shielding materials

Single Event Effects (SEE) in electronic devices

- E_{mean} needed to create an e⁻ hole pair in Si: 3.6 eV
- Depth of the V_{sensitive} \approx 1 µm \rightarrow ionization of \approx 1 MeV/ µm is required

To simulate the SEE the following exp. data are important

Double diff. cross sections (E and Θ) of

- > light projectile fragments
- heavy recoil target fragments

from reactions of \approx 20 - 150 MeV/N n, p and heavy ions in Si, Ge, etc.

n+ H.I. elastic scattering data

> to determine the optical potentials involved, i.e. the effective interaction between a neutron and a nucleus, which are used in σ_n calculations

Accelerator requirements / Available Accelerators

- Accelerate ions at least from He to Fe with E ≈ 100 2000 MeV/N
- Have "available" beam time

Chalmers

Heavy Ion Research Facility in Lanzhou (HIRFL), China

Overall layout of the HIRFL

TL2

8-0-0- TR4

13th WRMISS Workshop, Krakow, Polen

Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS)

RTBLL1

TL1

TL2

RIBLL1

Chalmers

⊕-0¥

SSC

Heavy Ion Accelerators @ IMP (cont.)

HIRFL-Cooling Storage Ring (CSR): Main synchrotron ring (CSRm) Experimental ring (CSRe)

Now under operation:

lon species: C ~ U

 $E_p \le 1$ GeV/u for C

Intensity ≤ 1 mA

Intensity: 10⁵ ~ 10⁸ ppp

13th WRMISS Workshop, Krakow, Polen

Summary and Conclusions

- Much has been done
 -but more needs to be done, even if not everybody agree to that !
- To improve Risk Assessments for
 - Humans
 - Electronics

Physics models and transport codes need to be benchmarked & validated !!! More and different experiments must More and different experimed ! therefore be performed !

Chalmers

Acknowledgements

PHITS collaboration Alfredo Ferrari Francesco Cerutti Marco Durante Nakahiro Yasuda Eric Benton **Cary Zeitlin Jack Miller** Lawrence Heilbronn **Günther Reitz** Larry Townsend Toshiyuki Toshito Qiang Li

Chalmers

the low the

Thank you very much for your attention !!!

BACKUP SLIDES !

Cross Sections Measurements

- Inclusive
 - E.g. charge changing cross sections
 > Break up of He between 200 and 2000 MeVN !
- Exclusive

When there are distinctions made as how the fragment "F" is produced, e.g. as to what comprises "X"

Semi-inclusive

When some but not all components ("final states") of "X" are measured Off-axis measurements (differential cross sections)

4. Production of evaporation residues and light fragments

Double differential cross sections Energy and angle Sth WRMISS Workshop, Krakow, Polen

The average energy needed to create an electron-hole pair in Si is 3.6 eV

 \Rightarrow Critical charge (Q_c) to casue a SEU: < 10 fC in modern SRAMS

- \Rightarrow Min. deposition in to cause a SEU: \approx 10 fC * 3.6 / 1.6 * 10 ^{-19 =} 0.2 MeV
- \Rightarrow Assume depth of the sensitive volume \approx 1 µm \rightarrow ionization of \approx 1 MeV/ µm is required
- \Rightarrow ... but the distances are decreasing all the time

To simulate the SEE the following exp. data are important

- 6. Double diff. cross sections (energy and angle) of the produced
 - > light projectile fragments
 - > heavy recoil target fragments

from reactions of ≈ 20 - 150 MeV/N n, p and heavy ions in Si, Ge, etc.

- 7. n+ H.I. elastic scattering data
 - to determine the optical potentials involved, i.e. the effective interaction between a neutron and a nucleus, which are used in n cross section calculations

13th WRMISS Workshop, Krakow, Polen

13th WRMISS Workshop, Krakow, Polen