

Preliminary results of SI2 experiment obtained by PADC track etch detectors J. Szabó, J. K. Pálfalvi, B. Dudás

Hungarian Academy of Sciences KFKI Atomic Energy Research Institute P.O.B. 49, H-1525 Budapest, Hungary

13th Workshop on Radiation Monitoring for the International Space Station 8-10 September 2008 Institute of Nuclear Physics, Krakow, Poland

Position of the AERI detectors in the middle of the box

The PADC sheets (marked with blue: 25, 24, 23, 21, 22) were placed close to the bottom of each stack \rightarrow nearly in the same positions

Etching of the detectors in 6 N NaOH, 70°C

- Detector material: polyallyl-diglycol-carbonate (PADC, TASTRAK, Bristol, UK)
- Surface: 36 x 18 mm²
- Thickness: 1 mm
- 1st step: 6h etching to measure the short range, high LET particles, 8 µm removal
- 2nd step: 15 h etching to measure lower LET & GCR particles, 20.1 μm removal

Investigations by optical microscope

 Semi-automatic measurements using the VIRGINIA image analyzer → minor and major axes and other geometrical and optical parameters of the tracks

 Manual measurements of long range HZE particle tracks → minor and major axes, projected range, depth

Calibration – converting the track etch rate ratio (V) obtained from the track parameters into LET

Expressions used during the calculations

Differential flux $\Phi_D(L) = f_c(L) \frac{dN(L)}{dLET} (d\Omega AT)^{-1}$

 $\Phi_D(L) = \Phi_6(L) if \Phi_6(L) \ge \Phi_{15}(L) otherwise \Phi_D(L) = \Phi_{15}(L)$

Absorbed dose in water $D = \Omega \times 1.6 \times 10^{-6} \times T \times \Sigma(\Phi_D(L) \times L \times dLET)$ Dose equivalent $H = \Omega \times 1.6 \times 10^{-6} \times T \times \Sigma(\Phi_D) \times L \times Q(L) \times dLET)$

Averaged quality factor Q = H / D

dN(L) - group fluence

dLET - LET interval

- $d\Omega$ possible solid angle of the incident particle
- *A* scanned surface of the detector

- T exposure time $f_c(L)$ - LET and dip-angle dependent correction factor \overline{L} - mean LET
- Q(L) LET dependent quality factor

LET spectra obtained on the PADC detector sheets 6h etching time

Results obtained after 6 h etching Lower limit of detection threshold: ~17.5 keV/µm

Label	D ±1σ (mGy)	Η ±1σ (mSv)	<mark>D rate</mark> ±1σ (μGy/day)	H rate ± 1σ (μSv/day)	Q ±1σ
21	2.40 ± 0.18	42.53 ± 1.87	14.87 ± 1.14	263.65 ± 11.61	17.75 ± 0.58
22	2.19 ± 0.37	40.76 ± 5.98	13.57 ± 2.24	252.69 ± 37.07	18.65 ± 0.35
23	2.53 ± 0.03	44.56 ± 0.45	15.68 ± 0.19	277.06 ± 3.45	17.67 ± 0.01
24	2.43 ± 0.08	43.99 ± 1.14	15.06 ± 0.47	266.54 ± 7.09	17.71 ± 0.08
25	2.39 ± 0.13	43.27 ± 3.35	14.82 ± 0.79	268.25 ± 20.81	18.09 ± 0.44

Combined results of 6h and 15 h etching Lower limit of detection threshold: ~10 keV/µm Only the evaluation of detector no. 21 has been completed

Label	D ±1σ (mGy)	Η ±1σ (mSv)	<mark>D rate</mark> ±1σ (μGy/day)	H rate ± 1σ (μSv/day)	Q ±1σ
21	4.47 ± 0.16	54.22 ± 0.64	$\textbf{27.70} \pm \textbf{0.97}$	336.13 ± 3.96	12.14 ± 0.28

D, H and Q on the ISS LET ≥ 10 keV/µm

Experiment	Mission date	Location	D rate ±1σ (μGy/day)	H rate ± 1σ (μSv/day)	Q ±1σ
BRADOS-1	02.24. – 31.10.2001	SM, P443	38.8 ± 8.2	324.8 ± 3.6	8.4 ± 1.8
BRADOS-3	02.02. – 28.10.2003	SM, P443	34.8	310.2	8.9
BRADOS-5	28.02. – 11.10.2005	SM, P443	27.0 ± 1.6	211.4 ± 14.4	7.9 ± 0.1
SI2	12.05. – 21.10.2007	SM at Matroshka-R	27.7 ± 0.9	336.1 ± 3.9	12.1 ± 0.3

HZE particles, an example

Parameters after 8 µm surface removal:

minor axis: 17.81 μ m major axis: 18.21 μ m projected length: 185.46 μ m depth: 345.00 μ m calculated length: 396.49 μ m incident angle: 27.08° LET > 1000 keV μ m⁻¹

These long range tracks of HZE particles were not included in the dose calculations. Their track density was found small, ~ 43 cm⁻², versus the evaluated track density of 5860 cm⁻², measured, for instance on detector No. 23.

Distribution of the manually measured HZE tracks detector No. 23

Acknowledgement

The authors would like to thank the opportunities to take part in the calibration runs at BNL and HIMAC, in the BRADOS and Space Intercomparison-2 missions. Thanks for the work of all those who organized and performed these experiments.

References

- Pálfalvi J.K., Szabó J., Akatov Yu., Sajó-Bohus L., Eördögh I., 2005. Cosmic Ray Studies on the ISS Using SSNTD, BRADOS Projects, 2001-2003. *Rad. Meas.* 40, 428-432.
- Pálfalvi J.K., Akatov Yu., Szabó J., Sajó-Bohus L., Eördögh I., 2006. Detection of Primary and Secondary Cosmic Ray Particles Aboard the ISS Using SSNTD Stacks. *Rad. Prot. Dos.* 120, 1-4, 427-432.
- Szabó J., Pálfalvi J.K., Dudás B., Akatov Yu. A., Eördögh I., 2008. Cosmic ray detection on the ISS by a 3 axes track etch detector stack and the complementary calibration studies. *Rad. Meas.* 43, 688 693.
- Hajek M., Berger T., Vana N., Fugger M., Pálfalvi J.K., Szabó J., Eördögh I., Akatov Y.A., Arkhangelsky V.V., Shurshakov V.A., 2008. Convolution of TLD and SSNTD measurements during the BRADOS-1 experiment onboard ISS (2001). *Rad. Meas.* 43, 1231-1236.

Thanks for your attention!