Gurrent and Future Status of ICCHIBAN Project and Reanalysis of Dosimeteric Data from ICCHIBAN-1 and ICCHIBAN-3

> Yukio Uchihori, Nakahiro Yasuda, Hisashi Kitamura, Iva Jadrnickova, Eric R. Benton, Michael Hajek, Thomas Berger, Vytcheslav A. Shurshakov on behalf of ICCHIBAN Working Group and Participants

Today's Menu of JECHIBAN

- Y. Uchihori : Current and future status of ICCHIBAN project and reanalysis of dosimetric data from ICCHIBAN-1 and ICCHIBAN-3
- H. Kitamura : Future ICCHIBAN Experiments Using Proton Beams
- N. Yasuda : Brief results from the ICCHIBAN/Space intercomparison 2 and ongoing experiments to resolve differences in CR-39 PNTD measurements
- I. Jadrnickova : Studies of various influence of various factors on dose quantities measured with CR-39 detectors onboard spacecraft
- S. Kodaira : Variation of dose quantities from CR-39 detectors onboard ISS Russian segment: etching and angular correction

InterComparison for Cosmic-rays with Heavy Ion Beams At NIRS

- Determine the response of space radiation dosimeters to heavy ions of charge and energy similar to that found in the galactic cosmic radiation (GCR) spectrum.
- Compare response and sensitivity of various space radiation monitoring instruments. Aid in reconciling differences in measurements made by various radiation instruments during space flight.
- Establish and characterize a heavy ion "reference standard" against which space radiation instruments can be calibrated.

http://www.nirs.go.jp/ENG/rd/1ban/index.html

The Past Experiments

Feb. 11-13, 2002	1 st ICCHIBAN Experiment (For Active Detectors)	C400, Fe400		
May 23-28, 2002	2 nd ICCHIBAN Experiment (For Passive Detectors)	He150, C400, Si490, Fe500		
Feb. 3-6, 2003	3 rd ICCHIBAN Experiment (For Active Detectors)	Si800, Fe500		
May 19-30, 2003	4 th ICCHIBAN Experiment (For Passive Detectors)	He150, C400, Ne400, Fe500,		
Sep. 6-7, 2003	1 st Proton ICCHIBAN Experiment (For All Detectors)	p70-250		
Feb. 14-17, 2004	5 th ICCHIBAN Experiment (For Active Detectors)	He150		
June 4-15, 2004	6 th ICCHIBAN Experiment (For Passive Detectors)	C135, Ar500, Kr400,		
Sep. 24-26, 2004	1 st NSRL ICCHIBAN Experiment (For All Detectors)	p1000, O1000, Fe1000		
Sep. 13-17, 2005	7 th and 8 th ICCHIBAN Experiment (For Active and Passive Detectors)	O400, Fe300, He150, C400,		
Oct. 26-27, 2006	1st CERF ICCHIBAN Experipment (For All Detectors)	≤200 GeV neutrons		

HIMAC (Heavy Ion Medical Accelerator in Chiba)

Next Generation Treatment Building

Participants

1	Armenia	YPI (Yerevan Physics Institute, Yerevan)
2	Austria	ARCS (Austrian Research Centers, Seibersdorf)
3	Austria	ATI (Atomic Institute of the Austrian Universities, Vienna University of Technology, Vienna)
4	Belgium	SCK-CEN (Belgian Nuclear Research Center, Mol)
5	Bulgaria	STIL-BAS (Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences, Sofia)
6	Czech Rep.	NPI (Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, Prague)
7	Germany	DLR (German Aerospace Center, Cologne)
8	Germany	Kiel University (Kiel)
9	Hungary	KFKI AEKI (KFKI Atomic Energy Research Institute, Hungarian Academy of Sciences, Budapest)
10	Japan	JAXA (Japan Aerospace Exploration Agency, Tsukuba)
11	Japan	NIRS (National Institute of Radiological Sciences, Chiba)
12	Japan	Waseda University (Tokyo)
13	Poland	INP (Institute of Nuclear Physics, Polish Academy of Sciences, Krakow)
14	Russia	IMBP (Institute of Biomedical Problems, State Research Center of the Russian Federation, Moscow)
15	UK	HPA (Health Protection Agency, Chilton)
16	USA	BNL (Brookhaven National Laboratory, New York)
17	USA	CARR (NASA Center for Applied Radiation Research, Prairie View)
18	USA	Eril Research Inc. (Stilwater)
19	USA	LBNL (Lawrence Berkeley National Laboratory, Berkeley)
20	USA	NASA-JSC (NASA Johnson Space Center, Houston)
21	USA	Oklahoma State University (Stilwater)

Participants for Active Detectors

Institution	Country	Name of Detectors	Detection Principle		
ARCS	Austria	TEPC SiPC	Proportional Counter		
BNL	USA	NSRL Dosimeters	Ion Chamber		
CARR	USA	Shuttle-style TEPC	Proportional Counter		
Eril Research USA		Dosimeter Package	TLD+CR-39		
IMBP	Russia	DB-8 ISS-Liulin	Silicon		
JAXA/ISAS Japan Kiel Univ. Germany		Reference Detectors	Silicon&SC		
		DOSTEL-1, 2, D	Silicon Telescope		
LBNL	USA	Ground Base Detector	Silicon Stack + SC		
NASA-JSC	USA	Shuttle & ISS-TEPC IV-CPDS	Proportional Counter Silicon Telescope + C		
NIRS	Japan	NIRS Detectors Liulin-4J	PSD, SC, Binary Filter, Silicon		
STIL-BAS	Bulgaria	Liulin E087 Liulin-5	Silicon		
Waseda Univ. & JAXA	Japan	RRMD-III	Silicon Telescope		

Participants of Passive Detectors

Institution	Country	Detectors
ATI	Austria	TLD-600 (6LiF:Mg, Ti), TLD-700 (7LiF:Mg, Ti), CR-39 PNTD
DLR	Germany	TLD-100 (LiF:Mg,Ti)
ERI	USA	CR-39 PNTD, TLD-700 (7LiF:Mg, Ti)
HPA (NRPB)	UK	PADC PNTD
IMBP	Russia	TLD-100 (LiF:Mg,Ti), CR-39 PNTD, Biomarker Seeds
INP	Poland	TLD-100 (LiF:Mg,Ti), LiF:Mg,Cu,P TLD, LiF:Mg,Ti, CR-39 PNTD
JAXA/NASDA & KEK	Japan	MSO TLD (Mg2SiO4:Tb), CR-39 PNTD
KFKI AEKI	Hungary	Pille TLD System(CaSO4:Dy), CR-39 PNTD
NASA JSC	USA	TLD-100 (LiF:Mg,Ti), TLD-300 (CaF2:Tm), TLD-600 (6LiF:Mg, Ti), TLD-700 (7LiF:Mg, Ti)
NIRS	Japan	Luilin-4J MDU, CR-39 PNTD(TD-1), CR-39 PNTD(TT-P1), TLD-100 (LiF), Al2O:C Luxel, Glass-Ag(GD&GR)
NPI	Czech Rep.	CR-39 PNTD, Melinex/Bi PNTD, Al2O3:C TLD, Al-P Glass
OSU	USA	Al2O3:C OSL, Luxel Al2O3 OSL, Al2O3:C TLD, TLD-100 (LiF:Mg,Ti)
SCK-CEN	Belgium	TLD (MCP-7, TLD-700), OSL
YPI	Armenia	Nuclear Emulsion Sheet

Schedule of SpaceIntercemparison

SpaceIntecomparison-1 experiment

- Detectors were launched from Jan 29 Apr 30, 2004 (91.5 days).
- 4 institutes were participated

SpaceIntecomparison-2 experiment

- Detectors were launched from May 15 Oct 21, 2007. (160 days).
- 12 institutes participated.

SpaceIntecomparison-3 experiment

- Detectors was launched on May 2008.
- 12 institutes have participated.

The Future Experiments

CR-39 ICCHIBAN

- In 2008, CR-39 ICCHIBAN has been performed by N. Yasuda, I. Jadrnickova and H. Kitamura.
- □ The current status will be presented by N. Yasuda.
- □ Proton-ICCHIBAN-2
 - Proton-ICCHIBAN-2 will be performed using Medical-Cyclotron in NIRS in FY2009.
 - □ The detail will be presented by H. Kitamura.
- Space-Intercomparison
 - Space-Intercomparison-3 is now on going. The detectors will be returned on Oct., 2008 and delivered to the participants in this winter.
- □ The Next HIMAC-ICCHIBAN
 - □ Not scheduled but your proposal with new idea is welcomed.

Request of Reports of Active Detectors in-IC-5, 7, NSRL-FC and others

- Now, we would like to start to gather your reports of experiments for the active detectors.
- To avoid your additional and bored works, we request that you prepare some spread sheets of your data and analysis results.
- However, if you have not yet written ICCHIBAN reports, we request your reports including of the detail of your instruments and analysis methodologies.

Guidance of Calculation of Dosimeteric Parameters

- Because of lack of common guideline of calculation methods of dosimeteric parameters, it has been not easy to compare these parameters in the reports of ICCHIBAN-1 and -3.
- So, the guideline is shown and we request your calculation for the next reports following this guideline.

Region of Interest

- To calculate dose and dose equivalent for a particle, the Region of Interest (RoI) is defined.
- □ <u>Gaussian distribution</u> is fitted to the LET distribution and obtain a peak of LET and standard deviation. Then, a FWHM is calculated as $FWHM = 2.3548 \times \sigma$.
- □ Using these parameters, the RoI is defined as the following.

Gaussian distributions have been fitted to LET distributions of IV-CPDS, ISS-TEPC, DOSTEL, RRMD-III and Liulin-4J.

Detector	Peak	FWHM
IV-CPDS	10.78	1.35
ISS-TEPC	11.01	6.35
DOSEL	11.21	1.90
RRMD-III	10.67	1.41
Liulin-4J	10.85	1.92

Calculation of Dose per One Particle

□ Calculation of Dose(*D*)

$$D = \int D(L) \, dL = \int \frac{k}{\rho} \phi(L) \, L \, dL = \int \frac{k}{\rho} \frac{n(L)}{S} \, L \, dL = \frac{k}{\rho \cdot S} \int n(L) \, L \, dL$$

L: Unrestricted LET, *k*: Conversion Factor, ρ : Density of Medium, ϕ : Fluence of Particles, n(L): Number of Particles, *S*: Area of Detector

 \square Calculation of Dose per One Particle (D_1)

$$D_{1} = \frac{\int \frac{k}{\rho} \phi(L) L \, dL}{\int \phi(L) \, dL} = \frac{\int \frac{k}{\rho} \frac{n(L)}{S} L \, dL}{\int \frac{n(L)}{S} \, dL} = \frac{\frac{k}{\rho \cdot S} \int n(L) L \, dL}{\frac{N}{S}} = \frac{k}{\rho \cdot N} \int n(L) L \, dL$$

N: Total Number of Particles

Dosimeteric Parameters /

All data v are no res	were analy sponsibiliti	zed by Y.U ies for the			ICCHIBA Carbon 40 0 degree	N-1 00MeV/u		
Dotootor	Peak of	FWHM	Range o	of LET*	Avg.	Avg.	Avg.	Doso Eg
Detector	LET	of LET	Min.	Max	LET	ICRP60	per ion	per ion
IV-CPDS	10.78	1.35	9.43	12.13	10.80	1.26	17.31	21.97
ISS-TEPC	11.01	6.35	4.66	17.36	11.26	1.56	18.04	30.68
DOSTEL	11.21	1.90	9.31	13.11	11.02	1.33	17.66	23.65
RRMD-III	10.67	1.41	9.26	12.08	10.69	1.23	17.13	21.20
Liulin-4J	10.85	1.92	8.93	12.77	10.39	1.30	17.45	22.92
Calculation (Mono Energy)					1. 88	1.29	17.43	22.48
(8)/	(nGy)	(nSv)						

* Range of LET is expected PeakLET -+ FWHM.

** All dosimeteric data are expected to average in the above range of LET.

Formats for the next Reports (1)

	B2	- (0	f_{x}													×
- 4 F	АВ	С	D	E	F	G	Н	Ι	J	К	L	M	N	0	Р	G
1	IC-X, Ion, I	Energy, Angle, N	lote (ex. IC−6, H	e, 150MeV/	(u, 0 c	deg., No Abs	.)									
2																
3	ADC Data	LET(keV/um)	Num. of Events		Fun	ction for A	DC Data	to LET								
4	1					(ex. LET =	K x ADC x	м)								
5	2															
6	3				Disc	ription abo	out Paran	neter								
7	4					(ex. K = 81	2 keV/ado	o, conversio	n factor fro	m dE/dx in	Silicon to L	_ET in Silico	on)			
8	5					(ex. M = 1.2	20, conver	sion factor	from LET in	Silicon to	LET in Wate	er)				
9	6															
10	7															
11	8															
12	9															
13	10															
14	11															
15	12															
16	13															=
17	14															
18	15															
19	16															
20	17															
21	18															
22	19															
23	20															
24	21															
25	22															
26	23															
27	24															
28	25															

Formats for the next Reports (2)

A F	В	С	D	E	F	G	Н	Ι	J	K	L	M	
2		G 111	Peak of LET	FWHM of LET	Range (of LET*	Avg. LET	Avg. Q.F.	Avg. Dose per ion	Avg. Dose Eq. per ion			
3	ю	Condition	(keV/um)	(keV/um)	Min.	Max.	(keV/um)	ICRP60	(uGy)	(uSv)			
4	1												
5	1												
6	1												
7	1												_
8	3												_
9	3												-
10	3												-
11	3												-
12	5												
13	5												
15	5												-
16	7												
17	7												
18	7												
19	7												
20	Proton												
21	Proton												
22	Proton												
23	Proton												
24	NSRL												_
25	NSRL												_
26	NSRL												
27	NSKL												-
29					* Range of	LET is expe	cted PeakLET -+	FWHM.					
30					** All dosin	netery data is	s expected to ave	rage in the above	e range of LET.				
31													
30			¢1					14				•	
H I D-X-A Summary C													

Conclusion

- Il ICCHIBAN experiments were performed on the ground base accelerator facilities and 2 space intercomparison experiments in the frame of ICCHIBAN project were performed.
- Analyzed data of ICCHIBAN-1- 8, Proton, NSRL and CERF will be gathered by ICCHIBAN Working Group with the manners on the guidelines. The deadline is Dec. 1st, 2008.
- Several ICCHIBAN experiments are scheduled in near future. The detail of these experiments will be presented in the next talks. If you would like to participate to these experiments, please let us know. We welcome your new idea for these experiments.