Minimizing Astronauts' Risk from Space Radiation during Future Lunar Missions

Myung-Hee Y. Kim¹, Matthew Hayat², Hatem N. Nounu³, Alan H. Feiveson⁴, and Francis A. Cucinotta⁴

¹Wyle, Houston, TX 77058, USA ²Universities Space Research Association, Houston, TX 77058, USA ³University of Houston, Houston, TX 77058, USA ⁴NASA Johnson Space Center, Houston, TX 77058, USA

Outline

- Future Space Radiation Environment for Lunar Missions
 - GCR
 - SPE
- Analysis of Directional Shielding Provided by Lunar Transfer Vehicle (LTV) Geometry during Interplanetary Transfer
- Organ Dose Calculation inside LTV by Idealization of the Actual Motion of Astronauts
- Organ Dose Calculation inside Rover during EVA
- SPE Shelter Optimization in Consideration of Mass Constraint and Maximizing Protection

Problem

- Continuous galactic cosmic rays (GCR) pose a serious health risk to humans and contribute to failure rates for electronics during space missions. The risks must be predicted accurately for future lunar missions.
- → We develop a practical approach to predicting GCR environment.
- Solar particle events (SPEs) are a concern for space missions outside Earth's geomagnetic field.
- The sporadic occurrence of SPEs and number of large SPEs in a mission period are major operational problems for planning space missions and protecting humans during missions.
- → We calculate probabilities of large SPEs occurring during a given mission duration.
- An integrated strategy for radiation protection on lunar exploration missions.

GCR Environment and Point Dose Equivalent inside Spacecraft

Database of Solar Particle Events

Solar Cycle	# of SPE	# of Day	Period	Fluence, $\Phi_{\rm E}$			
Cycle 23	92	3897	5/1/1996-12/31/2006	$\Phi_{10,30,50,60,100}^{(1)}$			
Cycle 22	77	3742	2/1/1986-4/30/1996	$\Phi_{10,30,50,60,100}^{(1)}$			
Cycle 21	70	3653	2/1/1976-1/31/1986	$\Phi_{10,30}^{(2)}$			
Cycle 20	63	4140	10/1/1964-1/31/1976	$\Phi_{10,30}^{(2)}$ and $\Phi_{10,30,60}^{(3)}$			
Cycle 19	68	3895	2/1/1954-9/30/1964	$\Phi_{10,30,100}^{(2)}$ and $\Phi_{10,30}^{(4)}$			
Impulsive Nitrate Events	71	390 years	1561 - 1950	$\Phi_{30}^{(5 \text{ and } 6)}$			
\mathbf{P} (7 and 8) \mathbf{W} (1 1) \mathbf{P} (0 and 10)							

Energy Spectra^(7 and 8) or Weibull Distribution Function^(9 and 10)

- (1) GOES SEM data: <u>http://goes.ngdc.noaa.gov/data/</u>
- (2) Feynman, A., Dao-Gibner, and Silverman, J. Spacecraft, 27, No. 4, pp. 403-410, July-August, 1990.
- (3) King, J. H., Solar proton fluences for 1977-1983 space missions, J. Spacecraft, 11, No. 6, pp. 401-408, June 1974.
- (4) Shea, M. and Smart, D., Solar Physics, 127, pp. 297-320, 1990.
- (5) McCracken, K. G., Dreschhoff, G. A. M., Zeller, E. J., Smart, D. F., and Shea, M. A., Solar cosmic ray events for the period 1561-1994, 1. Identification in polar ice, 1561-1950. J. Geophys. Res., **106**, No. A10, 21585-21598, October 1, 2001.
- (6) Siverman, S., Silverman catalog of ancient auroral observations, 666BCE to 1951, <u>http://nssdc.gsfc.nasa.gov/space/auroral/auroral.html</u>, 2002.
- (7) Freier, P. S. and Webber, W. R., "Exponential Rigidity Spectrums for Solar-Flare Cosmic Rays," *J. Geophys. Res.*, Vol. 68, No. 6, 1963, pp. 1605-1629.
- (8) Biswas S., Fichtel, C. E., and Guss, D. E., "Study of the Hydrogen, Helium, and Heavy Nuclei in the November 12, 1960 Solar Cosmic-Ray Event," *Phys. Review*, Vol. 128, No. 6, 1962, pp. 2756-2771.
- (9) Kim, M. Y., Cucinotta, F. A., and Wilson, J. W., A temporal forecast of radiation environments for future space exploration missions, Radiat. and Environ. Biophys., **46**, No. 2, pp. 95-100, June 2007.
- (10) Xapsos et al., IEEE Trans. Nuc. Sci. 47(6), 2218-2223, 2000.

Cumulative Distributions of Sample SPE Populations

Size of Event (> Φ_{30})

Cumulative %

GCR Deceleration Potential

SPE Probability in 2-Week Mission and BFO Exposure Level inside a Typical Equipment Room in Free Space

SPE Probability in 1-Week Mission and BFO Exposure Level inside a Typical Equipment Room in Free Space

Probability of SPE with $\Phi_{30} > 2 \times 10^9 \text{ cm}^{-2}$ in 1-Week Mission

	Sample	$P(\Phi_{30} \ge 2 \times 10^9 \text{ cm}^{-2})$
Coloulation	SPEs in Space Era	0.39 % ± 0.4 %
Calculation	SPEs in Space Era + the interval 1561-1950	0.49 % ± 0.39 %
Observation	SPEs in the interval 1561-1950	0.47 %

Hazard Model of SPE Gap Times

Histogram of Event Size, $log(\Phi_{30})$

Cumulative Probability during a Given Mission Period

LTV Geometry and Directional Point Dose from 1972 SPE at 4 DLOCs

Structural Distribution Model Using ProE[™] Various Composition Layers for Lunar Transfer Vehicle

Ray Tracings at 4 DLOCs inside Spacecraft

X.XX +-0.02 X.XXX +-0.005

X.X +-0.1 X.XX +-0.02 X.XXX +-0.005 ANG. +-0.5

Shielding Distributions at 4 DLOCs inside LTV

Lunar Transfer Vehicle Concept DLOC2 Aug 1972 SPE

Lunar Transfer Vehicle Concept DLOC2 Aug 1972 SPE

Directional Point Dose Distribution inside LTV Various Composition Layers for Exploration-Class Spacecraft

Organ Dose Calculation inside LTV with Idealization of the Actual Motion of Astronauts

Idealization of the Actual Motion of Astronauts

Random Orientation

- Discrete number of evenly scattered rays over 4π solid angle
- Isotropic angular distribution (for the same volume element):

 $p(\mu) = constant$

Aligned Orientation

- A continuously distributed source rays
- Cosine angular distribution in a small interval on spherical polar coordinates (for each volume element):

 $p(\mu) = \mu$

Idealization of the Actual Motion of Astronauts

Random Orientation

$$H_{organ} = \frac{1}{N} \sum_{i=1}^{N} H_{organ}(X_i)$$

$$H_{organ} = \int_{\theta=\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos\theta \ d\theta \ d\phi \ H \Big(X(\theta,\phi) + Y(\theta,\phi) \Big)$$

where

N = the given number of rays

 X_i = the amount of shielding by material composition layers at the l^{th} ray where

 θ = polar angle of a ray

A 1'

- ϕ = azimuth angle of a ray
- $X(\theta, \phi)$ = the integrated thickness of shielding by spacecraft of a ray
- $Y(\theta, \phi)$ = the thickness of body shielding of a ray

Organ Dose Quantities for Two Orientations August 1972 SPE

		Random orientation				Aligned orientation			
		DLOC1	DLOC2	DLOC3	DLOC4	DLOC1	DLOC2	DLOC3	DLOC4
X-coordin	ate, cm	<mark>43.18</mark>	-43.18	40.64	-40.64	43.18	-43.18	40.64	-40.64
Y-coordin	ate, cm	<mark>119.38</mark>	119.38	119.38	119.38	119.38	119.38	119.38	119.38
Z-coordination	ate, cm	<mark>52.71</mark>	52.71	-79.34	-79.34	52.71	52.71	-79.38	-79.38
Al-Eq x _{avg}	, g/cm²	<mark>15.18</mark>	15.08	15.85	15.33	15.18	15.08	15.85	15.33
X _{min} - X _{max}		<mark>0 - 102.07</mark>	0 - 105.50	0 – 83.21	0 - 85.79	0 - 102.07	0 - 105.50	0 – 83.21	0 - 85.79
	Avg skin	<mark>126.61</mark>	121.07	104.08	108.59	150.92	135.41	111.45	114.45
	Eye	<mark>86.76</mark>	84.36	73.58	77.06	89.71	89.94	81.62	79.72
	Avg BFO	<mark>16.91</mark>	16.82	15.2	15.88	18.14	18.20	16.05	15.98
	Stomach	7.38	7.37	6.77	7.03	6.94	6.89	6.59	6.63
	Colon	14.42	14.36	13.04	13.6	14.46	14.36	12.67	12.79
	Liver	10.37	10.33	9.41	9.8	9.43	9.60	8.92	9.23
CAM	Lung	<mark>12.16</mark>	12.12	11.04	11.5	12.09	11.61	11.30	10.73
organ	Esophagus	<mark>11.61</mark>	11.57	10.54	10.98	11.25	10.78	10.52	9.93
dose, cSv	Bladder	7.54	7.53	6.9	7.17	7.64	7.25	6.98	6.84
	Thyroid	<mark>18.39</mark>	18.31	16.55	17.28	18.55	18.15	16.47	16.79
	Chest	<mark>72.23</mark>	70.58	61.85	64.83	74.88	73.95	67.60	66.37
	Gonads	<mark>35.27</mark>	34.74	30.76	32.24	37.72	32.64	31.19	27.74
	Front brain	<mark>29.54</mark>	29.32	26.31	27.53	28.72	27.60	25.32	25.32
	Mid brain	<mark>16.2</mark>	16.15	14.68	15.3	15.52	15.56	14.05	15.03
	Rear brain	<mark>28.93</mark>	28.72	25.79	26.98	27.49	27.96	24.98	27.84
Effective of	dose eq, cSv	21.45	21.16	18.89	19.75	22.42	21.09	19.43	18.64
Point dos	e eq, cSv	<mark>254.68</mark>	242.74	207.92	216.83	253.48	241.76	205.76	211.88

Rover Concepts for EVA

Initial Rover Design

- Three sections of rover: front, center, and back.
- Wall thickness: 1 g/cm²

Schematic Drawings of Rover *With* and *Without* Polyethylene Shelter in the Center Section

SPE Shelter Concepts on Rover

Rover section	Section mass of 1 g/cm ² , kg	Rover mass, kg	Polyethylene SPE shelter thickness, g/cm ²	Polyethylene shelter mass, kg	Total mass, kg
Front	201		1	166	720
Center	188	554	3	490	1044
Back	165		5	800	1354

EVA Exposure (in cSv) Analysis on Lunar Surface from August 1972 SPE Based on the Initial Rover Design

	Polyethylene thickness of SPE shelter in the rover								
	0 g	g/cm ²	1 ç	g/cm ²	3 g/cm ²		5 g/cm ²		
		Graphite/		Graphite/		Graphite/		Graphite/	
Organ dose,	AI	Epoxy	AI	Epoxy	AI	Epoxy		Epoxy	
cSv	Rover	Rover	Rover	Rover	Rover	Rover	Al Rover	Rover	
Skin			358.05	320.48	116.20	107.92	49.99	47.09	
Eye			277.52	252.14	100.40	93.69	45.17	42.66	
Avg. BFO			34.46	32.58	17.69	16.88	9.81	9.44	
Stomach			12.00	11.51	6.97	6.74	4.27	4.17	
Colon			27.61	26.21	14.72	14.10	8.39	8.10	
Liver			19.17	18.23	10.36	9.94	6.01	5.82	
Lung			22.40	21.32	12.20	11.70	7.08	6.85	
Esophagus			21.30	20.27	11.62	11.15	6.76	6.54	
Bladder			12.93	12.35	7.26	7.00	4.35	4.24	
Thyroid			37.13	35.14	19.22	18.35	10.70	10.30	
Chest			221.87	202.84	84.16	78.68	38.61	36.51	
Gonads			95.46	88.38	40.27	37.88	19.59	18.62	
Front brain			66.16	62.20	32.12	30.50	17.05	16.33	
Mid brain			30.33	28.85	16.45	15.77	9.47	9.15	
Rear brain			64.30	60.48	31.38	29.81	16.72	16.01	
Point dose			801.89	713.90	249.65	230.94	104.10	97.61	
Whole body									
effective dose	89.02	80.20	51.94	48.27	23.10	21.85	11.88	11.36	
Rover mass	554 kg		720 kg		104	44 kg	135	1354 kg	

Optimization of Rover Design

New Rover Design

Polyethylene Weight Optimization

Poly thickness is reduced in the front side of the poly shelter where it is protected by the front section of the rover.

Reduction is from 5.265 to 1.053 cm

Poly in shelter section is made 155 cm tall Without bottom layer Poly thickness is reduced in the back side of the poly shelter where it is protected by the back section of the rover

Reduction is from 5.265 to 1.053 cm

50% poly weight reduction while maintaining almost the same shielding protection.
– Poly weight was reduced from 799 kg to 378Kg.

Cross Section of Vehicle showing the poly shield thickness optimization inside shelter

Mass of Rover of 1 g/cm²-thick Pressurized Vehicle with Various SPE Shelter Concept Based on the New Rover Design

Rover section	Section mass, kg	Rover mass, kg	Polyethylene SPE shelter thickness, g/cm ²	SPE shelter mass, kg	Total mass, kg
Front	180	554	1	166	721
Center bottom	73		3	490	1044
Center top	148		5	557	1112
Back	154		Optimized	378	933

EVA Exposure (in cSv) Analysis on Lunar Surface from August 1972 SPE Based on the New Rover Design for Optimization - Aluminum Rover -

	Polyethylene thickness of SPE shelter in the rover							
Organ dose,	No sholtor	$1 a/am^2$	$2 a/am^2$	$5 a/am^2$	Optimized Sholtor			
	NO SHEILEI	r g/cm	5 g/cm	5 g/cm	$(0-5 \text{ g/cm}^2)$			
Skin	929.49	331.10	104.03	43.84	66.83			
Eye	549.56	258.71	90.33	39.75	58.88			
Avg. BFO	49.13	32.96	16.30	8.83	11.61			
Stomach	15.89	11.57	6.50	3.90	4.87			
Colon	38.39	26.48	13.61	7.58	9.83			
Liver	26.54	18.40	9.59	5.44	6.99			
Lung	30.79	21.51	11.30	6.41	8.23			
Esophagus	29.26	20.46	10.76	6.12	7.85			
Bladder	17.55	12.44	6.75	3.96	5.01			
Thyroid	52.61	35.55	17.72	9.63	12.65			
Chest	407.73	207.59	75.88	34.04	49.80			
Gonads	157.98	90.03	36.54	17.37	24.55			
Front brain	97.68	63.06	29.45	15.26	20.56			
Mid brain	41.69	29.13	15.23	8.56	11.05			
Rear brain	94.58	61.31	28.78	14.96	20.12			
Point dose	2310.87	739.66	222.85	90.97	141.55			
Whole body effective dose	86.63	49.12	21.09	10.61	14.54			
Rover mass	554 kg	721 kg	1044 kg	1112 kg	933 kg			

EVA Exposure (in cSv) Analysis on Lunar Surface from August 1972 SPE Based on the New Rover Design for Optimization - Graphite/Epoxy Composite Rover -

	Polyethylene thickness of SPE shelter in the rover							
Organ dose, cSv	No shelter	1 g/cm ²	3 g/cm ²	5 g/cm ²	Optimized Shelter			
					(0-5 g/cm ²)			
Skin	723.45	296.07	96.54	41.26	59.45			
Eye	477.47	234.72	84.21	37.52	52.94			
Avg. BFO	46.06	31.11	15.54	8.49	10.9			
Stomach	15.15	11.09	6.29	3.81	4.67			
Colon	36.17	25.11	13.03	7.31	9.27			
Liver	25.04	17.47	9.2	5.27	6.62			
Lung	29.09	20.44	10.84	6.2	7.8			
Esophagus	27.65	19.44	10.33	5.92	7.44			
Bladder	16.64	11.87	6.51	3.86	4.78			
Thyroid	49.38	33.59	16.91	9.27	11.88			
Chest	361.52	189.48	70.87	32.16	44.97			
Gonads	143.46	83.19	34.34	16.5	22.45			
Front brain	90.93	59.17	27.94	14.6	19.12			
Mid brain	39.39	27.67	14.59	8.27	10.44			
Rear brain	88.12	57.56	27.32	14.32	18.73			
Point dose	1688.81	658	205.96	85.23	124.85			
Whole body								
effective dose	77.88	45.59	19.94	10.14	13.44			
Rover mass	554 kg	721 kg	1044 kg	1112 kg	933 kg			

Summary

- A temporal forecast of GCR has been derived from the GCR deceleration potential (φ) - Point dose equivalent in interplanetary space is influenced by solar modulation by a factor of 3.
- Relationship between large SPE occurrence and ϕ is clearly shown.
- Exposure levels of 34 big SPEs and worst-case SPEs:
 - Most SPEs lead to small BFO doses in an unshielded typical equipment room (< 12.5 cGy-Eq on lunar surface).
- Probabilities of one and multiple SPEs with event size thresholds are obtained for various mission durations.
- Using detailed distribution of directional risk assessment, better risk mitigation can be made for more efficient protection inside a habitable volume/shelter/spacecraft during future lunar missions.
- A large SPE similar to August 1972 event can be shielded to the whole body effective dose <150 mSv by an optimized SPE shelter on rover during EVA on lunar surface.