

12th Workshop on Radiation Monitoring for the International Space Station 10-12 September 2007 Oklahoma State University

STUDY OF DOSE DISTRIBUTION IN A HUMAN BODY IN SPACE FLIGHT WITH THE SPHERICAL TISSUE-EQUIVALENT PHANTOM

<u>Shurshakov V.A.¹</u>, Akatov Yu.A.¹, Petrov V.M.¹, Kartsev I.S.², Petrov V.I.², Polenov B.V.², Lyagushin V.I.³

¹⁾State Research Center of the Russian Federation Institute of Biomedical Problems Russian Academy of Sciences, Moscow, Russia,

²⁾ Science and Engineering Center NIC SNIIP, Moscow, Russia

³⁾ S.P. Korolyov Rocket Corporation Energia, Korolyov, Moscow Region, Russia

Main goals of the MATROSHKA-R space experiment

- Long-term dose measurements inside the phantoms, in the habitat module, and outside the ISS;
- Verification of the shielding models and transport codes for calculating the dose distribution inside the ISS and inside the phantoms

Spherical phantom Size: 370x370x390 mm; mass: 32 kg

MATPEURA

Containers

WYLLbernky

Locations of the container detectors

20 containers with the detectors inside the phantom

Locations of the jacket detectors

32 pockets with the detectors on the phantom surface

Spherical phantom in the crew cabin (right board)

Comparison of the spherical and

anthropomorphic phantom properties

	Spherical phantom	Anthropomorphic phantom	
Mass	32 kg	Full body is 70 kg; The torso with head is about 60 kg	
Size	35 cm diameter	Full height is 170 cm; The torso with head height is about 90 cm	
Detector placement and retrieval	Easy retrieval of the detector containers from the radial holes without full disassembling	Special locations for the detectors distributed throughout the phantom body. Full disassembling is required for the detector retrieval	

8

Crew working with the phantoms

0.5 crewmember working hour

8 working hours

Chemical composition of the phantom tissue

Chemical element	Standardized phantom	ESA phantom (Rando)	The Russian Spherical phantom
	0⁄0		
Н	10	9.2	8.6
N	2.6	2.5	2.6
0	61.3	20.3	32.3
С	23.1	67.8	56.5

Apogee and perigee altitudes during Matroshka-R session (425 days)

Detectors Returned On-ground in Oct. 2005

Zero meridian line of the phantom surface

The spherical phantom location in the Service Module

The phantom near the cabin wall

Dose distribution in the phantom jacket pockets

16

 $D_{mean} = 140 \ \mu Gy/day$ $D_{min} = 103$ $D_{max} = 191$

The dose rates measured in the phantom containers

Crew cabin outer wall 17

Dose distribution (XZ-plate)

Dose distribution (YZ-plate)

Parameterization of dose distribution versus angles

$$\mathbf{F}(\mathbf{\phi}) = \frac{D \max - D \min}{2} \cdot \sin\left(\mathbf{\phi} + \frac{3\pi}{2}\right) + (D \min + (\frac{D \max - D \min}{2})) \quad \mathbf{XZ \ plate}$$

Doses in critical organs as obtained in the spherical phantom

Organ	Depth, mm	
Skin	1	
Eye lens	3	
Testis	20	
BFO	50	
CNS	70	
GES	90	

Mean-tissue and effective dose estimation

$$D_{mean-tissue} = \frac{\int D(\vec{r}) dm}{\int dm} \qquad \qquad D_{eff} = \sum_{i} w_{i} D_{i}$$

- D_{mean-tissue} = 81 mGy (for an arbitrary phantom attitude)
- D_{eff} = from 83 to 86 mGy or from 2.5 to 5% higher than D_{mean-tissue} as dependent on the testis attitude to the crew cabin wall

Conclusion

- The spherical phantom and its tissue-equivalent material have passed the successful test in conditions of a real space flight at the Russian Segment of ISS.
- Critical organ doses of a crew member in the crew cabin were estimated with the spherical phantom
- Mean-tissue and effective doses were also estimated in the crew cabin
- The spherical phantom can be widely used in future space exploratory missions as a witness of the crew' radiation exposure

The End

