Fragmentation Cross Section Database

Cary Zeitlin, Steve Guetersloh, Lawrence Heilbronn and Jack Miller Lawrence Berkeley National Laboratory

Database Project History

Early 1990's situation: sparse data on GCRlike ions except for extensive measurements by Webber et al.

Webber's group measured several ions and energies on He, C, and CH₂ targets, using subtraction to get results for H targets for GCR propagation models.

Schimmerling/Miller Group

- Formed in 1991 to make systematic fragmentation measurements at the LBL Bevalac using many beam ions, energies, and targets.
 - Standard target list: C, CH₂, Al, Cu, Sn, Pb
- Ran twice mostly hardware debugging and then Bevalac closed in spring 1992.
- Fall 1995, AGS radiation biology program started runs with 1 GeV/amu ⁵⁶Fe.

HIMAC and NSRL

- AGS cave difficult to work in, beam tuned for radiation biology experiments (large spot, high intensity, lots of spill structure).
- I HIMAC experiments started 1997 just 1 week/yr, but many beams available, $E_{beam} ≤ 800$ MeV/amu.
 - Superb beam \rightarrow high quality data, easy analysis.
 - Last (?) run February 2007.
- **#** First NSRL physics runs in October 2003.
 - Much better than AGS (not yet as good as HIMAC).
 - Last run September 2006.

AGS Revisited

- Last physics experiment at AGS in 2005 to measure C, Si, and Fe ions at 3 high-energy points each (3, 5, and 10 GeV/amu).
- LBL 0° experiment plus 3 off-axis systems: highenergy neutron counters, ZDDS (Christl and Kuznetsov, MSFC), and SSDs (Pinsky et al., UH).
 - 3 separate data acquisition systems, tricky to merge in off-line analysis, but UH group has succeeded.

Typical Setup

- **\ddagger** Different approach from typical experiments: measure "light" fragments with $Z < Z_{beam}/2$.
- **\blacksquare** Most experiments report $Z > Z_{beam}/2$ only.
- To get low Z, need detectors far from target and data need model-dependent corrections for angular distribution losses. (Or could use highly segmented detectors).

Present Status

LBL Cross Sections-Index - Mozilla Firefox	
le <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
< Example 1 A the second secon	C • Google
NASA Measurements Consortium :	LBNL Cross-sections.
PRELIMINAL Some of this data has not been published. For those da cross sections and 10% for fragment cross sections. A Green cells are active	RY DATA ata, errors have been set to 5% for charge cl ctual published errors will be smaller in most links to data tables.
Publications Ion Energy (MeV/nucleon)
⁵⁶ Fe 400 500 600 800 1	,000 3,000 5,000 10,000
	,000
⁴⁰ Ar 290 400 650	
Langley Tools 35CI 650 1	,000
28 _{Si} 290 400 600 800 1	l,200 3,000 5,000 10,000
²⁴ Mg 400	
²⁰ Ne 290 400 600	
¹⁶ O 290 400 600 1	1000
¹⁴ N 290 400	
¹² C 290 400	3000 5000 10000
¹¹ B 400	
¹⁰ B 400	
⁴ He 230	

Published Cross Section Data

- Older: ⁵⁶Fe at 1 GeV/amu, ²⁰Ne at 600 MeV/amu.
 Newer: ²⁸Si at 290, 400, 600, 800, 1200
- MeV/amu, and ¹²C at 290, 400 MeV/amu.
- Almost done: ³⁵Cl at 650 and 1000 MeV/amu, ⁴⁰Ar at 290, 400, and 650 MeV/amu, and ⁴⁸Ti at 1000 MeV/amu.
- Next: AGS 2005 data with 9 sets of cross sections.

Selling Points

H Range of targets spans the period chart from H to Pb.

- Scaling from H target cross sections to targets heavier than H is dubious.
- - Few previous data for modelers to work with.
 - It's more complicated than simple models predict.
- Careful & conservative evaluation of systematic errors in measurement (often underestimated).
- Large number of data points: ~ 200 charge-changing and 2000 fragment production cross sections.

Cl – Ar – Ti Paper (In Progress)

- Comparison of different ions and energies in a narrow range of projectile mass (35 to 48).
- Demonstrates all the main points: light fragments, model tests, differences between H and other target materials, neutron-excess dependence of the fragment cross sections.

Fragments from 40 Ar (Z = 18)

- Large acceptance spectrum is typical, hard to distinguish peaks below charge 10, impossible below charge 8.
- Small acceptance spectrum shows peaks for all species and some combinations, e.g., Z ~ 3.5 corresponding to 3 He fragments in coincidence.

Charge-changing Cross Sections

- NUCFRG2 (and PHITS, not shown) do well for Cl beams but are systematically off 5-10% for Al and heavier targets for Ar and Ti beams.
- Was NUCFRG2 tuned to Webber et al. H and C target data?
 - NUCFRG2 σ_{cc} matches H target data very well. (PHITS off 10-15% for H.)
 - We don't always agree w/Webber (e.g., ²⁸Si data).

Fragment Cross Sections

- Normalizing to σ_{cc} allows data for all targets to be plotted on the same scale.
- Curves are similar for all targets except H.
- Cross section for F production (Z = 9) is always minimum for non-H targets.
 - This would not be apparent if we only measured Z > Z_{beam}/2.
- Bigger odd-even effect for ³⁵Cl beam than for others.

Odd-Even Effect

- Previously reported by many.
- - Stronger effect seen for $T_z = 0$ than for $T_z = -2$.
- Iancu et al. defined V(Z_f) to measure the effect.
 - They find weak target dependence; we agree.
- We go further: lump all odd-Z
 V's together into an average, do same for even-Z V's, take ratio.
 - Excessively reductionist, but...

Excessive Reductionism Pays Off

- Include other data sets –
 ²⁸Si from our recent paper and ⁴⁰Ca from Chen et al.
- **Effect** strongest for $T_z = 0$ projectiles, weaker but not negligible for $T_z = -2$.
- **T** For H targets, there seems to be energy dependence for $T_z = 0$, not for $T_z = -2$.
 - Note ${}^{35}Cl$ has $T_z = -1/2$.
- Hard to see trend for C+Al data; possibly differing trends for Ar, Fe beams.

Fragment Cross Sections vs. Models

- Most models are oversimplified and this appears in two ways.
 - Lack of odd-even effect.
 - Cross sections decrease monotonically with increasing ΔZ.
- Contrast with PHITS: on average. not much closer to the data than others, but it predicts the odd-even effect and cross sections increase below Z = 9.

Conclusions

- Many data available, with occasional updates, at http://fragserver.lbl.gov/main.html
 - Trying to get cross sections into NNDC at Brookhaven.
- Links to tables of cross sections and our articles, including neutron cross section papers by Lawrence Heilbronn et al.
 - Lawrence and Prof. Nakamura of Tohuko Univ. have also published a handbook of neutron cross section data.
- **u** We plan to publish as much charged particle data as possible maybe not much given that support $\rightarrow 0$.
- More could be mined from existing data, but...