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Measurement during the cruise

GCR Average dose rate: 480 * 80 uGy/day
Dose equivalent rate: 1.84 * 0.30 mSv/day
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Measurement on the Martian surface
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Motivation of this work

Yes, the GCRs are constantly there. But their flux is not constant.
DLR What we measure under the current modulation conditions may not be
directly used to applied to future missions.
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Solar Modulations of GCRs
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Motivation of this work

We want to 'predict’' the radiation environments under different modulation
conditions using our measurements.

DLR
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Cruise phase: magnetically well £
connected with Earth
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Solar modulation ®
is often measured
by Neutron
Monitors at Earth.

Regression
correlation
coefficient:

0.80 for silicon
dose rate and ®

0.77 for plastic
dose rate and ®

Guo et al 2015, A&A
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The data can be fitted well
empirically in ftwo ways
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Fit the correlation between
dose rate measurements and Phi
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Discussions concerning e
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=¥ future missions during the cruise “==

DLR

» The predicted dose equivalent rate during solar maximum conditions where ® ~ 1200 MV was found to
be as low as = 0.5-1.5 mSv/day (as within the uncertainties of both models) which is considerably lower
than the RAD cruise measurement 1.75 + 0.30 mSv/day.

» The discrepancy of the two fitted models, as well as the extrapolation uncertainties, are significant at low
solar modulation potentials and future measurements during solar minimum periods are necessary for
improving the predictions at this range.

» Total mission GCR dose equivalent can be estimated:

- Considering a similar shielding condition, assuming a 180-day one-way duration as a typical NASA’s
“Design Reference” Mars mission, we could estimate a crew taking a 360-day round trip to receive
about 360 £ 180 mSv from GCRs under a high solar modulation condition (solar maximum).

- The fastest round trip with on-orbit staging and existing propulsion technologies has been estimated
to be a 195-day trip (120 days out, 75 days back with an extra e.g., 14 days on the surface). This
would result in an even smaller GCR-induced cruise dose equivalent during solar maximum: 195 * 98
mSyv.

- The MSL/RAD summed dose equivalent of the five observed SEPs is 24.7 mSv. However, additional
contributions of dose rate and dose equivalent rate by SEPs can differ significantly from our current
measurements since the frequency and intensity of such events are highly variable.

- These estimations are less than the safe upper limit for 30- to 60-years old, non-smoking females
(600-1000 mSv) and males (800-1200 mSv) given by the NASA Central estimates of dose limits.

13



Surface data: First time on Mars!

Day of Year 2012 - 2014

400 Sep Oct NovDec Jan FebMarAprMay Jun Jul AugSep Oct NovDec Jan

—  Plastic ; ; ;
[ — Silicod|WWhen a so@lar particle event is well 5
350k connected with Mars and hasa hard{ |
| spectrum, RAD can also detect the
| flux after atmospheric shielding.

w

o

o
L}

200

RAD dose rate [uGy/day]

150

100 100 200 300 400 500 14
Time since Landing [sol]



The first 500 Sols of dose rate data

Day of Year 2012 - 2014
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RAD dose rate [uGy/day]
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The first 500 Sols of dose rate data

Day of Year 2012 - 2014
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neutron

Plot from Ehresmann et al 2011
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» Surface particle fluxes and corresponding dose rates are affected
by solar modulation potential ® and atmospheric pressure P.

- When pressure is higher and shielding is stronger, dose rates decrease.

- When solar magnetic potentials are higher, more GCRs are shielded away
and dose rates are lower.

« Excluding SEPs, RAD measured dose rates are affected by three
major influences concurrently and continuously:

- Day and night fluctuations of the atmosphere column mass
- Seasonal changes of the atmospheric density

- Modulations of the heliospheric magnetic fields as well as the rotation of
the Sun (~27 days)
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< \/griations of surface partlcle‘sgectra E |
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Day and night fluctuations of the atmosphere column mass
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\ Diurnal Variations of Pressure:
Column Mass Changes Due to Thermal Tide
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RAD dose rate [uGy/day]

Day of Year 2012 - 2014
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Anti-correlation between
dose rate and pressure

The derived relationship between pressure [Pa] and
oLr dose rate [uGy/day] variations is:
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./ Variations of surface particle|spectrafet =
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- Seasonal changes of the atmospheric column mass
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Seasonal conditions are reversed in the

DLR northern and southern hemispheres

Seasonal pressure change is driven by the
growing and shrinking of the polar caps
(CO2).

Summer in the southern hemisphere is
much warmer than summer in the northern
hemisphere due to its closer distance to the
Sun (high eccentricity orbit of Mars).

The Atmospheric pressure is driven mainly
by south polar caps changes
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Pressure Changes over a Martian Year
(687 earth days)

Yearly surface pressure variation
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Long-term Variations
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Long-term Variations
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- Modulations of the heliospheric magnetic fields as well as the rotation
of the Sun (~27 days)
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Subtract longterm pressure effect

- 'Pure' Solar Modulation effect
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.~ But the longitudinal separation of ft""=
the two planets are significant ™<=
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DLR

-+ Data have been
binned into each
26-sols in order
to smooth out
the solar rotation
effect and the
heliospheric
longitudinal
discrepancies
between Earth
and Mars.

Linear parameter:

B1 =-0.12 (silicon);

-0.11 (plastic)

Correlate and fit solar modulation potential with

pressure-constant dose rate
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_ Prediction of GCR radiation during other solar
modulation and pressure conditions
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D =B0 + B1 ¢:
Linear dependence B1 obtained from surface
measurements are less than that from the cruise phase
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PLANETOCOSMICS (GEANT4) simulations
e.g., Primary protons — secondary protons

Flux down
Primary Particles: proton; Secondary Particles: proton
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Input spectra through atmosphere
— Surface spectra
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Discussions

D(D, p) = Do, + kP + BD.

DLR
» Both models have assumed the independent effect of pressure and ® on dose rates.

However, this may be modified when pressure and ® change over wider ranges than
have been observed to date:

— a much thinner atmosphere will allow more lower-energy particles to reach the
surface which experience stronger modulation (e.g., bigger |B]| in the linear model).
Therefore, for significant pressure changes, 3 should be a function of P, i.e., B(P)

- much stronger solar modulation (bigger ®) would lead to a larger fraction of high-
energy particles in the GCR flux and these energetic particles are less affected by
the atmosphere (smaller |k|); when pressure is much higher and the surface
atmospheric depth is closer to the Pfotzer maximum, most primary particles are
shielded while more secondary particles are generated and this may result in a
decreased shielding effect; therefore the dependence of dose rate on pressure may
be modified as P and ® change substantially, i.e., k = k(P, ®)

- both the linear and non-linear models are empirical and derived from
measurements; despite the robustness of the fitting of the actual data, the
extrapolation is highly uncertain and a complete model requires measurements over
the full range of solar conditions.
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