

1

MSL RAD Measurements of the Neutron Spectrum in Transit to Mars and on the Martian surface

J. Köhler, C. Zeitlin, B. Ehresmann, R. F. Wimmer-Schweingruber, D. M. Hassler, G. Reitz, D. E. Brinza, G. Weigle, J. Appel, S. Boettcher, E. Boehm, S. Burmeister, J. Guo, C. Martin, A. Posner, S. Rafkin, O. Kortmann and the MSL Science Team.

> WRMISS September 8-11, 2015

Measuring neutral particles

- Neutral particles can only be measured "indirectly"
- Neutral particles create signal in D/E but do not trigger the surrounding AC (F1/F2 and C)

Measuring neutral particles

- Stopping charged particles deposit their complete energy
- Neutral particles deposit only a random fraction of their energy

How can we obtain the real neutron energy from a measurement?

Instrument description via a Detector Response Function (DRF)

Instrument description via a Detector Response Function (DRF)

RAD measures gammas and neutrons in D and E

- Neutrons can be detected in E

 but also in D
- Gammas can be detected in D – but also in E

Example:

- A Neutron has a high likelihood to create a signal in E, and a low likelihood to create a signal in D.
- The energy deposit is randomly distributed

Instrument description via a Detector Response Function (DRF)

The DRF has been obtained via GEANT4

Mathematical background

Measurement = DRF * input spectrum

 $\vec{z} = \mathbf{A} \cdot \vec{f}$

 $\binom{5}{5} = \binom{1}{0} \cdot \binom{0}{10} \cdot \binom{0}{10}$

Mathematical background

Measurement = DRF * input spectrum

 $\vec{z} = \mathbf{A} \cdot \vec{f}$

f can not be obtained directly, and a straightforward inversion (A⁻¹) results in unphysical results.

 \rightarrow Formulate as a *maximum likelihood* problem with constraints:

with $f_i > 0$

$$\min \sum \left(\frac{\sum_i a_{ij} f_j - z_i}{\sigma_i^2} \right),$$

Finding the (global) minimum

 The L-BFGS-B (Brodyden-Fletcher-Goldfarb-Shanno) algorithm finds a *local* minimum for a given initial guess

 \mathbf{f}_2

f₁

Finding the (global) minimum

- L-BFGS-B Brodyden-Fletcher-Goldfarb-Shanno algorithm finds a *local* minimum
- Select reasonable initial guesses (E.g. power laws)
- Select the best result from all initial guesses
- Add some noise to the solution and try again
- Repeat untill the solution does not improve anymore

U

С

Verification with calibration measurements

CAU

Verification with calibration measurements

14.8 MeV Neutrons

14

The Martian Gamma and Neutron spectra

The Martian Gamma and Neutron spectra

Neutral particle measurements during cruise phase

Gamma and Neutron spectra from cruise phase

Gamma and Neutron spectra from cruise phase

The MSL spacecraft

Modelling the MSL spacecraft

Extraterrestrial Physics

- Geometry, mass and composition, all based on information from Wikipedia and JPL websites
- Shielding, made to fit given shielding distribution.

Furure Work

- Apply the inversion to onboard neutral particle histograms (ongoing)
- Simulate neutron production onboard the MSL spacecraft (ongoing)
- Investigate temporal variations of the neutron flux on the Martian surface (ongoing)
- Inversion procedure will be applied to ISSRAD (NIISS - Neutron Inversion for ISS)

Thank you for your attention!

Inversion procedure:

Köhler, J., et al., 2011, Inversion of neutron/gamma spectra from scintillator measurements, NIM-B

Surface measurement:

Köhler, J., et al., 2014, *Measurements of the neutron spectrum on the Martian surface with MSL/RAD*, Journal of Geophysical Research

Cruise measurement:

Köhler, J. et al., 2015, *Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory*, Life sciences and space research

Information on error estimation:

Ask me for my backup slides

