ISS-RAD Fast Neutron Detector (FND) Simulation and Data Unfolding- Status Report DIATION ANA Martin Leitgab, NASA SRAG on behalf of the NASA SRAG ISS-RAD team Workshops on Radiation Monitoring for the 09/10/15 **International Space Station**

Outline:

1. Introduction: Light function formalism

- 2. Light function calibration
- 3. Regularized unfolding
- 4. Validation on generated data
- 5. Summary & Outlook

1. Introduction: Detection/Selection Mechanism: Boron-loaded Scintillator

- Neutrons deposit energy in plastic scintillator, some captured by ¹⁰B atoms:

1. Introduction: Response Spectrum Shape

- 'Monoenergetic' neutron calibration ($\Delta E < 5\%$) at PTB, Germany:

FND on beam axis/in forward scattered field at 2.5m from target

1. Introduction: Response Spectrum Shape

- Filtered ADC spectrum in response to monoenergetic neutron fields (after background subtraction):

Recoil Channelnumber

0000

0

1. Introduction: Scintillation Light Creation/Propagation: Light Function Formalism

- Shape of response spectra dominated by factors impacting collected light:

a) Multiple scattering of neutron with scintillator material nuclei: multiple pulses of scintillation light per neutron

b) Scintillation light quenching (ionization quenching- Birk's law): nonlinear amount of collected scintillation light per interaction depending on energy deposit & scattering target

Even monoenergetic neutrons create broad distribution in light deposit/FND recoil spectra.

Approach describing scintillation light generation in multiple scattering: Light function formalism
 Measurements/parameterization of light functions: Verbinski et al, 1968 (liquid scintillator):

1. Introduction: Scintillation Light Creation/Propagation: Light Function Formalism

- Example: End-to-end FND simulation (MCNP-PoliMi and FND signal processing algorithms) for monoenergetic neutron fields at PTB (FM002 calibration)
- Spectral shape driven by number of high energy deposit neutron collisions off hydrogen:

0 Coll. 1 Coll. 2 Coll.

_____ 3 Coll.

- For result with finer energy binning than experimental data: apply light function formalism

2. Light function calibration

2. Light Function Calibration- Flowchart

- Goal: Extract continuous light function describing scintillator behavior to freely choose energy binning
- For each experimental monoenergetic data sample, start from first principles:

a) Create energy deposit files

2.a.1 Generation of Neutron Energy Deposits: MCNP-PoliMi

- Use MCNP-PoliMi package:

- * MCNP limitations for neutron propagation and fission/inelastic scattering simulation:
 @ only returns total energy deposition of each neutron in target volume for conversion to light
 - @ photon and neutron productions in fission/inelastic collision events not correlated in time/energy/multiplicity
- * PoliMi package writes out each interaction of single neutrons and photons
 @ time correlation within each single history, resolution in 100 ps
 => energy-to-light conversion possible on per-interaction-basis

@ elastic, (n,gamma) and (n,n') interactions accurately modeled/propagated

* Generations of 1e+08 n per experimental energy in bias cone around FND

2.a.2 'Time-connect' Neutron Energy Deposits from MCNP-PoliMi

- Output of PoliMi: ASCII file containing interactions of neutrons and photons with target material:

Interaction Particle Number				_						Code						
History		Particle Type		ZAID	Cell	ergy Deposited [IVIeV]	Time [Shakes]	X-Coord.	Y-Coord.	Z-Coord.	G Weight	Generat	ion Nr Numbe	Energer of Sca	y Prior to Collision [MeV] tters	
H-scatter	2805	1	1	-99	1001	10	3.589902	8.08	2.05	-1.30	-3.78	1.000E+0	00	0 (0 0	4.958E+00
	2805	1	1	-99	1001	10	1.112997	8.28	0.39	0.26	-1.68	1.000E+0	00 0	0 1	L 0	1.368E+00
	2805	1	1	-99	1001	10	0.003554	8.79	2.27	2.43	0.51	1.000E+0	0 0) 2	0	2.549E-01
	2805	1	1	-99	1001	10	0.181367	8.82	2.39	2.53	0.64	1.000E+0	0 0) 3	0	2.514E-01
	2805	1	1	-99	6000	10	0.004136	8.82	2.39	2.53	0.65	1.000E+0	0 0) 4	0	7.007E-02
B10	2805	1	1	-99	1001	10	0.043889	9.05	2.41	1.76	0.89	1.000E+0	0 0) 5	0	6.590E-02
Captur	<mark>e!</mark> 2805	1	1	0	5010	10	2.789669	24.20	-0.40	2.31	2.63	1.000E+0	00 0) 1	4 0	1.375E-04
Capture	2805	2	2	1	6	10	0.099156	24.22	-1.92	0.93	-2.22	1.000E+0	00	0 (0 801	4.776E-01

photon

- Limitation in PoliMi: no transport of non-neutron/photon decay products of capture/fission reactions -> manually distribute recoil energy among decay products & convert to light

- To create realistic succession of neutron events in scintillator: 'time-connect' PoliMi events to experimental flux (30-310 /s/cm^2):

Particle Type											
History		Interaction	ZAID	Energy Deposito	ea [iviev]	Absolute Time [µs]					
15	1	-99	6000	0.3258	200	.9430278347747105272					
15	1	-1	6000	1.22300	6 200	.9446278347747067983					
15	1	-99	1001	1.19312	200	.9471278347747045245					
20	1	-1	6000	1.15353	6 249	.6897651601931613641					
21	1	-99	6000	2.07032	8 258	.0006369570315882811					
35	1	-99	6000	0.02756	8 372	.9355042009522662738					
9999	9993	2 1	-99	6000 (0.009083	943205800.4175952672958					
9999	9995	8 1	-99	1001 1	L.209701	943206036.2944241762161					
9999	9998	8 1	-1	6000 ().332827	943206258.0235788822174					
9999	9998	8 1	-99	1001 ().772745	943206258.0235788822174					
9999	9999	7 1	-99	1001 1	L.429591	l 943206423.4481251239777 → ~15 min					

2.b.1 Convert Energy Deposit to Light- Function Parameterization

- Fit to Verbinski data parameterized as: 2nd order polynomial at low deposited energy; sqrt(const+E^2) at high energy
- Change 5 parameters to optimize match with experimental data

$$L(x_{ED}) = \begin{cases} ax_{ED} + bx_{ED}^2 & \text{for } x < g\\ c + d\sqrt{e^2 + f^2 x_{ED}^2} & \text{for } x >= g, \text{ when} \end{cases}$$

Continuity requirements for 1st and 2nd derivative

2.b.2 Apply Resolution-Implementation

- Single-point implementation of all experimental resolution contributions:

- * light production/quenching/reflections in plastic,
- * light coupling scintillator to PMT
- * PMT photon detection
- * electronic noise (PMT/amplifier) etc

- Optimize 3 parameters to match experimental data

ΔL / L (rel. FWHM):

2.b.3 Light Collection/Pulse Digitization (see Michael V.'s talk)

- Convert light yields to corresponding electronics signal pulses via Gaussian function sampled by 33 MHz clock; area normalized to light yield
- Two filters create **bipolar signals** for peak detection and **'moving average (sum)'** for signal height
- Time width of Gaussian chosen to match experimental signal processing pulse width (full width ~390 ns)

2.b.4 Light to Channelnumber Conversion: Photon Calibration

Inputs: experimental photon source and MCNP-simulated energy deposit spectra
 Perform global fit of conversion function parameters: create channelnumber spectra from generated deposited energy spectra

Continuity requirement

2.b.4 Light to Channelnumber Conversion: Photon Calibration

- Result: Low light yield region prefers nonlinear (power law) shape (also seen in other literature):

2.b.5 FND Pulse Pair Selection (see Michael V.'s talk)

- Apply same selection as FND FPGA

- Algorithm considers three latest detected pulse amplitudes (moving averages) and time intervals between them (zero crossing of bipolar signal)

- Pulse selection logics: accept A, B as pulse pair:

I) SH_B in capture signal window &&
 II) Δt_AB in capture time window &&
 III) Δt_AB < Δt_BC ||

(SH_C outside of capture signal window $|| \Delta t_BC$ outside of capture time window)

2.b.6 Background/Chance Coincidence Subtraction

- Poisson time correlation between recoil and capture pulses for B10 capture event allow to subtract backgrounds

- Oversubtraction ensures all backgrounds subtracted; rejected neutron pairs recovered via efficiency correction

- Performed in both experimental and simulated samples for consistency

2. Preliminary Calibration Results- Recoil Spectra Match

- Deviations for low channelnumbers at mid to high energies- further analysis to be done to identify missing process/incorrect treatment of neutron interactions; resolution to be adjusted as well

3. Regularized Unfolding

3.1 Unfolding Procedure: Regularized SVD Unfolding

- Uncertainties on data distributions and response matrix

=> use regularized, singular vertex decomposition-based unfolding algorithm (ROOT: TSVDUnfold)

- Advantages:

* correct treatment of uncertainty-equipped input quantities (detector response matrix, input distribution)

* full uncertainty propagation; fast

- Limitations:

* 'strength' of regularization described by free parameter, needs to be determined from simulation and pre-launch data (systematic uncertainty)

* dependence on input distribution (to be studied)

general problem formulation:
$$\hat{A} x^{\text{ini}} = b^{\text{ini}}, \qquad \sum_{i=1}^{n_b} (\sum_{j=1}^{n_x} \hat{A}_{ij} x_j - b_i)^2 = \min$$

but: Δb != 0

$$\sum_{i=1}^{n_b} \left(\frac{\sum_{j=1}^{n_x} A_{ij} x_j - b_i}{\Delta b_i}\right)^2 = \min_{i=1} (\hat{A}x - b)^T B^{-1} (\hat{A}x - b)$$

rescaling and regularization:

$$\tilde{A} w - \tilde{b})^T (\tilde{A} w - \tilde{b}) + \tau \cdot (C w)^T C w = \min$$

regularization parameter: chosen from rank of response matrix/problem

-> need response matrix for given recoil channelnumber and chosen neutron energy binning

A. Hoecker, V. Kartvelishvili, NIM A372, 469 (1996) [arxiv:hep-ph/9509307]

3.2 Neutron Energy Binning

- Neutron energy binning:

* low and high limits: approach from detector side:

@ lower limit: 200 keV (electronics lower pulse cutoff/arming threshold)

@ upper limit: 8.5 MeV (corresponding pulses start to saturate 12-bit ADC)

* bin width:

@ FND orbit data histograms hardcoded to 512 channel width (29 bins)

@ light function nonlinearity: first recoil bin contains most of all < 1 MeV neutrons

@ choose second bin such that contains majority of peak for 1.2 MeV

=> 12 bins, bin width 0.7 MeV

- Boundary effects:

* Neutrons < 200 keV contribute to low bins of recoil distributions (finite detector resolution, fixed-amplitude capture signals)

* Neutrons > 8.5 MeV contribute to all bins in recoil spectra (scattering, capture signals)

-> include under- and overflow bins in neutron energy:

* reason to believe that low energies correctly modeled

 * fidelity of simulation/physics models for energies > 8.5 MeV not as high -> additional systematic uncertainties

- Choose 'input spectrum' close to expected truth:
 - * Koshiishi et al, published 2007 (data from 2001);
 - * three data points filled for energies [100 MeV; 10 GeV) from simulation
- Integral orbit averaged flux (black line):
- * thermal to 200 keV: ~0.6 n/cm^2/s, > 8.5 MeV: 0.6 n/cm^2/s
- * total ~3.0 n/cm^2/s

- Generated energies from thermal to maximum energies to have representative neutron spectra of each kinematic region (MCNP-PoliMi)

- Scale relative statistics/time for each neutron energy analysis bin according to measured orbit averaged fluxes reported in Koshiishi et al, to be close to expected environment

- Response recoil spectra for chosen neutron binning; fluxes acc. to Koshiishi et al
- Underflow contributions only in first channelnumber bin: 12%
- Overflow neutron energies contribute to all channelnumber bins: dominates highest two bins;
- >10% contribution to bins >11000; few % down to first bin
- -> unfolding removes contributions

- Line and row integrals of response matrix;
- Recoil channelnumber distribution represents simulation of detector response to on orbit spectrum from 0.1 meV to 10 GeV measured by Koshiishi et al + simulation

4. Validation on generated data

4.1 Validation on Generated Monoenergetic Data

- MCNP-PoliMi-generated monoenergetic energies encountered at PTB
- Apply energy resolution of FND light function calibration, simulated efficiencies
- Tuning necessary for single energies- resolution mismatch

4.1 Validation on Generated Monoenergetic Data

- Extreme case: combine all single energies in one reconstructed histogram, unfold;
- Differences <~25% for most part

4.2 Validation on Generated Data- AmBe

- Built-in MCNP-Polimi AmBe spectrum, generated inside simulated source as volume source

- Deviations to ISO AmBe spectrum ~30%, but benchmarking rather for functional relation to original true spectrum

4.2 Unfolding Benchmarking- Generated AmBe Data

- Largest deviations 18%, general undershoots truth (possibly normalization tuning necessary)

5. Plan Ahead

- Improve match of calibration to experimental data and of unfolding to generated data; unfold experimental data

- Systematic studies: other unfolding algorithms

- Study FND **response and recoil spectrum contributions** of **mixed radiation field** on ISS: protons, alphas, photons (simulations/ experimental measurements: TRIUMF, NSRL)

Backup

2c) Direct Mapping/Conversion Spectral Match Test

- Scale 'truth' histograms with PTB reported (adjusted) neutron flux

- Comparison with GAS analysis results statistics-limited to <~ 5 MeV (only spotty shadow cone and background subtraction data at higher chn bins):

@ Expected: Low energy spectrum overestimated, medium/high energy spectrum underestimated

@ AmBe spectrum shows structure in ISO-truth, not reflected in DBM spectrum: deviations +45% to -41%;

@ Cf spectrum closer (statistics limited): overestimate at low bins ~22%, medium energy bins large uncertainties, in part consistent;

- Conclusion: Direct Mapping/Conversion analysis method by design shows limitations in reproducing neutron energy spectra.

4.1a Simulation of Neutron Energy Deposits: MCNP-PoliMi

- for all materials use ENDF-VII library at 300 K, assembled in 2005; max energy 20 MeV, 500-3500 energies depending on material

4.1a Simulation of Neutron Energy Deposits: MCNP-PoliMi

- for all materials use ENDF-VII library at 300 K, assembled in 2005; max energy 20 MeV, 500-3500 energies depending on material

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4696573

4. Scintillation Light Creation/Propagation: Light Function Formalism

3.1 Unfolding Procedure: Regularized SVD Unfolding

A. Hoecker, V. Kartvelishvili, NIM A372, 469 (1996) [arxiv:hep-ph/9509307]

general problem
formulation:

$$\hat{A} x^{\text{ini}} = b^{\text{ini}},$$
 $\sum_{i=1}^{n_b} (\sum_{j=1}^{n_x} \hat{A}_{ij} x_j - b_i)^2 = \min$
with SVD:
 $\hat{A} = U S V^T$
 $z = V^T x$
 $d = U^T b$
 $x = Vz = VS^{-1}d = VS^{-1}U^T b = \hat{A}^{-1}b$
 $\hat{A}^{-1} = V S^{-1}U^T$
but: delta b != 0
 $\sum_{i=1}^{n_b} (\frac{\sum_{j=1}^{n_x} \hat{A}_{ij} x_j - b_i}{\Delta b_i})^2 = \min$
 $(\hat{A}x - b)^T B^{-1}(\hat{A}x - b) = \min$
rescaling and
regularization:
 $(\tilde{A} w - \tilde{b})^T (\tilde{A} w - \tilde{b}) + \tau \cdot (C w)^T C w = \min$
regularization parameter: chosen from rank of
response matrix/problem

-

2) Neutron Efficiency Results, ADC Saturation

- Efficiencies from PTB datasets: Rel. uncertainties 2-3%;

- ADC saturation for high pulse heights

2) Preliminary Fit Result to Capture Pulse Distributions

- Experimental data not corrected for beam background/room return

2) Preliminary Simulation Result for Delta t Capture Distribition

- Experimental data not corrected for beam background/room return

