

Current and Future Developments of the Medipix Technology for Space Radiation Applications

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne Lawrence Pinsky Physics Department University of Houston

The Principal Acknowlegments...

L. S. Pinsky¹, A. Empl¹, L. Tlustos¹, M. Kroupa^{2,3},
T. Campbell-Ricketts¹, R. Rios^{2,3}, N. N. Stoffle^{2,3},
E. J. Semones², C. Amberboy^{2,3}, B. G. Swan²,
A. A. Bahadori², S. A. Wheeler², D. Turecek^{1,5},
S. Pospíšil⁵, J. Jakubek⁵, Z. Vykydal⁵,
H. Kitamura⁶, & S. Kodaira⁶, S. P. George^{1,2,7}

AND the Medipix2, Medipix3 and soon to be Medipix4 Collaborations

¹ Physics Department, University of Houston, Houston, TX, USA <pinsky@uh.edu>

- ² NASA Johnson Space Center, Houston, TX, USA
- ³ Lockheed Martin , Houston, TX, USA
- ⁴ University of Houston-Downtown, Houston, TX, USA
- ⁵ Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic

⁶ National Institute for Radiological Sciences, Inage, Japan

NASA—ISS (Univ. of Houston + IEAP—CTU Prague)

- A total of 7 separate Timepix devices (Radiation Environment Monitors—REM) have been placed inside the ISS (at 425 Km 51.6° orbit) since Aug. 2012
- 4 are still fully functioning and producing daily detailed dosimetry reports...
- (Two have been returned for evaluation, but as yet no Timepix chips have failed in space...)

Onboard ISS

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

4

Medipix Devices in Space On Orion (EFT-1)

- BIRD (Battery-operated Independent Radiation Detector) worked exceedingly well as already described earlier in this meeting...
- Based onTwo independent Timepix-based devices...

BIRD @ NASA Space Rad. Lab @ Brookhaven Nat. Lab in NY

BIRD with the cover off...

Hybrid Pixel Detectors

Detector and electronics readout are optimized separately

Learning. Leading.

Bumps on the readout side

MCNC-RDI x200

Hybrid Pixel Detector - Cross Section

The Medipix Collaborations General Goal: to Evolve the Hybrid Pixel Detector Technologies for Use in Other Areas (e.g. Medical Imaging)

Medipix(1) Collaboration

- Formed at CERN in ~1995 with 5 institutions
- 64 x64 pixel x-ray counting chip

Medipix2 Collaboration

- Formed in ~2000 (eventually with 17 institutions)
- Two chips produced: MXR (2003) <u>Timepix</u> (2006)
- Both chips 256 x 256, 55 μm pixels = 2 cm².
- Frame-based readout—<u>Timepix</u> (4 modes incl. TOT or TOA).
- <u>Timepix2</u> in final design process (2015-2016).
- Medipix3 Collaboration
 - Formed in 2008 (Currently 22 institutions) 256 x 256, 55 μm
 - Medipix3, Medipix3.1, Medipix3RX (Charge summing chips)
 - <u>Timepix3</u> (2013) Data-driven Readout-simultaneous TOT & 1.6 ns TOA.

Timepix (2006)

- ...Has been around since 2006 (250 μm CMOS technology)
- Well characterized, including a few issues with work-arounds...
- 256 x 256 55 μm pixels either in 14 bit pseudo-random TOT mode or in the TOA mode with 10 ns resolution pixel-by-pixel.
- Timepix2 (In Final Design Process)
 - To be "plug-n-play" control compatible with the Timepix.
 - Functionally changed significantly (new technology 135 μm CMOS).
 - Zero-suppression, BOTH TOT and TOA simultaneously measured, fungible output counter, new front-end to accommodate higher inputs, and other known Timepix issues cleaned up...

Timepix3 (2013)

- Data-Driven readout (No dead-time up to 81 MHz pixel hits)
- Both TOT and TOA (1.6 ns) and new Front-end electronics
- Still in the process of being characterized (higher power consumption than the Timepix2...

AND... Medipix4 is FORMING NOW!

- Unlike the previous Medipix Collaborations, Medipix4 will simultaneously design the Medipix4 (counting chip) and the Timepix4.
- It will employ the latest CMOS technology... (With Power Control Options...)
- The Chips will be much larger than the current ones and the Timepix4 will have smaller pixels..
- The Timepix4 will be able to function in either the frame-based or data-driven (500 Mhits/s) modes.
- Each pixel will have fungible output registers, and both TOT & TOA with ~ 780 ps time resolution, as well as a reduced threshold < 1 KeV (That is total per pixel and NOT KeV/μm)! These detectors are 100% efficient for penetrating charged particles...

Timepix4 Specs

		Timepix3 Timepix4		
Pixel Size		55 x 55 µm	35 x 35 µm	
Pixel arrangement		256 x 256	400 x 400 (Option A) 285 x 911 (Option B1) 628 x 457 (Option B2) 628 x 911 (Option C1) 685 x 857 (Option C2)	
Operating Modes		TOA and TOT PC and iTOT		
Zero- Suppressed Readout	Data driven	< 80 MHits/s	< 500 MHits/s	
	Frame based	YES	YES	
TOT energy resolution		< 2KeV	< 1Kev	
Time resolution		1.56ns	~781ps	
Readout bandwidth		5.12Gb (8x SLVS@640 Gbps)	20.48 Gbps (4x 5.12 Gbps)	

Towards Timepix4

Improve energy resolution (TOT) and time resolution (TOA):

- TOT resolution limited by ENC only:
 - Minimize the quantization error
 - Target < 1 KeV
 - > 5 MeV <u>per pixel</u> in sensor sensitivity
- TOA resolution limited by front-end bandwidth, pixel noise and VCO frequency
 - Doubling local VCO frequency will half the TOA resolution

Provide Power Consumption Options

 Low Power modes (Partial Chip or Power down digital until needed. Also sensor current monitor modes possible.

Floorplan: Option A

Floorplan: Option B1

Floorplan: Option B2

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

16

Floorplan: Option C1

Floorplan: Option C2

20th WRMISS-Medipix in Space Pinsky - Sept. 10 2015 - Cologne

mm

Expected Yield

	Wafer size	Reticle Size	Good Chips	Yield (A)
Timepix3	200mm	14 1 v 16 01	105	~60% (meas)
	300mm	14.1 X 10.21	250	~60%
Option A	300mm	28.3 x 16.21	125 + 125	~60%
Option B	300mm	32 x 24	70 + 70	30% ??
Option C	300mm	32 x 24	70	15% ??

Large designs will require an robust architecture to improve yield:

- Triple modular redundancy (TMR)
- Avoid long shift registers
- Error detection and correction

Common features for both chips

High Speed serializers (>5 Gbps) Clock Data Encoding PLL

- Analog Periphery
- Synchronized clock for counting:
 - Avoid counter glitches
- On chip threshold calibration
- Compatible pinout and readout for both chips?

Thank you for your attention...

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

Frame for detector SN5001 (2014-10-08 22:45:49)

Sat Feb 15 00:40:52.242498 2014 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 42.2278 [uGy/min], Dose equivalent = 853.9796 [uSv/min], Occupancy = 4197

7

VE A P

Sun Dec 15 00:08:51.086856 2013 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 12.3410 [uGy/min], Dose equivalent = 347.3835 [uSv/min], Occupancy = 2663

Sat Dec 14 16:29:44.478190 2013 , Acq_Time = 4.0000 [s] I04-W0094 Dose = 33.5098 [uGy/min], Dose equivalent = 788.5636 [uSv/min], Occupancy = 1778

~

Mon Dec 02 21:47:04.889180 2013 , Acq_Time = 4.0000 [s] 103-W0094 Dose = 9.4817 [uGy/min], Dose equivalent = 200.5656 [uSv/min], Occupancy = 1598

1

Thu Feb 06 20:57:39.170058 2014 , Acq_Time = 4.0000 [s] D03-W0094 Dose = 141.9122 [uGy/min], Dose equivalent = 3237.9297 [uSv/min], Occupancy = 2038

Mon Apr 29 22:23:19.864237 2013 , Acq_Time = 4.0000 [s] D03-W0094 Dose = 37.5741 [uGy/min], Dose equivalent = 593.9044 [uSv/min], Occupancy = 1238

Thu Jan 31 22:56:31.255608 2013 , Acq_Time = 4.0000 [s] G03-W0094 Dose = 295.8055 [uGy/min], Dose equivalent = 4598.1747 [uSv/min], Occupancy = 3175

Fri Feb 07 09:17:54.853429 2014 , Acq_Time = 2.5395 [s] I04-W0094 Dose = 209.2499 [uGy/min], Dose equivalent = 3680.3618 [uSv/min], Occupancy = 2857

Sat Mar 01 22:46:47.355727 2014 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 18.7994 [uGy/min], Dose equivalent = 364.4604 [uSv/min], Occupancy = 3590

Fri Nov 09 19:11:41.661491 2012 , Acq_Time = 4.0000 [s] E06-W0087 Dose = 108.5174 [uGy/min], Dose equivalent = 1603.7414 [uSv/min], Occupancy = 2310

....

Wed Jan 15 07:31:00.296091 2014 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 18.4267 [uGy/min], Dose equivalent = 450.0683 [uSv/min], Occupancy = 4081

Sun Jan 12 18:59:40.603276 2014 , Acq_Time = 2.6566 [s] G01-W0099 Dose = 22.3399 [uGy/min], Dose equivalent = 511.9285 [uSv/min], Occupancy = 3594

...

Wed Jan 08 21:40:15.653035 2014 , Acq_Time = 4.0000 [s] G03-W0094 Dose = 29.7793 [uGy/min], Dose equivalent = 672.5660 [uSv/min], Occupancy = 1626

7

Tue Feb 18 02:09:33.132259 2014 , Acq_Time = 4.0000 [s] G03-W0094 Dose = 38.2716 [uGy/min], Dose equivalent = 789.7881 [uSv/min], Occupancy = 3112

Fri Feb 14 15:01:36.526700 2014 , Acq_Time = 1.1816 [s] I04-W0094 Dose = 79.9586 [uGy/min], Dose equivalent = 1638.6990 [uSv/min], Occupancy = 3160

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

45

Thank You for Your Attention Oh Yes! The DEMO

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

46