ISS-RAD: Charged Particle Detector Calibration and Readiness 20th WRMISS

R. Rios, Ph.D. on behalf of the RAD Science Team Space Radiation Analysis Group NASA

At a Glance

- Instrument Review
 - Design
 - Data Products & Analysis
- Detector Calibration
 - Calibration Campaigns
 - Sub-detector Highlights
- Results
 - Charge Resolution
 - From Ground Analysis Software
- Summary

Flight Model

CPD/RSH Design

 The RAD Sensor Head (RSH)/Charged Particle Detector (CPD) is a legacy MSL design and consists of several sub-detectors which are used for charged and neutral particle dosimetry and spectroscopy.

Detector	Material	Туре	Purpose
A, B ¹ , C	Si	SSD; 300µm thick	Charged particle spectroscopy
D	BGO ²	Scintillating Calorimeter	Energy resolving detector
E1	EJ260XL ³	Scintillator	High-energy particle measurements
F	EJ260XL ³	Scintillating Anti- coincidence	Anti-coincidence counter

- B/E cyclic, omnidirectional charged particle dosimetry
- Bismuth Germanium Oxide.
- Plastic scintillator. З.

B/E Dosimetry

- B dosimetry trigger doesn't require any particular geometry, just any hit above noise.
 - Dosimetry picks up charged particles from all directions, as well as γ and neutrons with limited efficiency.
- The E dosimetry trigger also doesn't require any particular geometry, just any hit above noise and a coincidence between high and low gains within E.
 - Again, the dosimetry trigger picks up charged particles from all directions, as well as γ -rays and neutrons.
 - E is more efficient for neutrons than B and less efficient for γ 's.

Data Products

- RAD has two modes of operation:
 - calibration all raw detector data are streamed o over USB.
 - science (flight) all raw detector data are processed and/or analyzed online; results are sto in non-volatile memory (NVM) which has 4GB of storage capacity.
 - Expected storage rate of ~50MB/week on ISS.
 - Raw data is stored in NVM at a prescaled 2Hz
 - Online analysis results are telemetered once p minute (i.e., cyclic), including the caution and warning alarm bit.
- Additionally stores/telemeters event rates and housekeeping information.
- Data packets and the stored data from the NVM processed/analyzed by the Ground Analysis Software (GAS).

out	ltem	Energy Range	Detector	An
	Proton Flux	[20 - 35); [35 - 72); [72 - 122) MeV		0
ored	Charged Dosimetry	0.2 - 850 keV/µm	CPD	(C
	Neutral Dosimetry	0.5 - 8 MeV (n ⁰)	FND	E
ber	Spectroscopy	5 - 80 MeV (γ, nº)		
	Helium Differential Flux (Z<3)	30-200 MeV/n		Ο
are	Heavy Ion Flux (Z≥3)	100-200 MeV/n	UFD	((
	LETwater	0.2 - 850 keV/µm		

Ground Analysis Software (GAS)

- GAS is a robust processing and analysis framework written in Python that uses MySQL (or Maria) for its database storage backend.
 - ROOT is also mixed into the code and was used for validation and verification.
- Apart from ISS-RAD data, we have the ability to incorporate ISS position into many of RAD's data packets.
- GAS has a simple and scriptable commandline interface and a simple API.
 - Easy to automate.
 - Fairly easy to extend; I have already developed a web interface for interactive data visualizations and data export (CSV or ROOT).

Detector Calibration

RSH Calibration

- Flight model sent to NASA Space Radiation Laboratory (NSRL) and Indiana
- Hardware responsiveness tested using 137 Cs (JSC) and O at ~10⁵ ions/spill.
 - **No** lockups or issues when running in science mode.
- AmBe for neutral particle measurements.

University Cyclotron Facility (IUCF) for multiple calibration campaigns in 2014.

RSH Calibration Campaigns in 2014

Beam Type	Month	
p, C, Si, Fe	April x 2	
p, He, Fe	June	
р	August	
р, О	October	

RSH Sub-detectors

A1, A2, B, and C:

- Standard SSDs with one electron/hole pair correlation to each 3.6 eV of energy deposited - ΔE.
- Each one is 300µm thick.
 - In the resulting Landau/Vavilov distributions,
 ΔE of a MIP:
 - 118 keV (mean)
 - 77 keV (peak)
- B is used to report dosimetry cyclically.

D and E:

- Scintillators with non-linear light output with respect to the energy deposited.
- Scintillation light is shared between two readout diodes in D and E; results in position dependence of the signals.
- E is used to report dosimetry cyclically.

F1, and F2:

- In the plastic anti-coincidence system, F1 is the upper, barrel-shaped part; F2 is bottom part.
 - F2 is expected to have calibration nearly identical to that of the E high-gain channels.
 - F1's readout channels are not as easy to calibrate in the usual beam configuration, since most particles do not hit F1 and even those that do have unknown paths through the plastic.
 - The F1 channels are expected to have the same calibration as the corresponding F2 channels, because the detectors are composed of the same material in the same thickness, with identical nominal gains in the electronics.

Scintillating Calorimeter: D

- MSL-RAD used MIPs for calibrating the scintillator readout, for which the quenching of light is minimal.
 - Same philosophy was applied to ISS-RAD.
- used in the resulting analyses.

 - D-penetrating data spanned multiple energies between $2 \le Z \le 14$.
 - Gain studies between DH and the other 3 gains yield good relationship results within a few percent; typical of the VIRENA.

• Calibration was primarily focused on calibrating DH first, high-energy data was

Motivation: more beam runs in which its signal stayed on-scale, while DU saturated.

D - Penetrating v. Stopping

- the other for heavier and penetrating ions.
 - MSL is primarily interested in penetrating ions and uses a fit with heavy ions.
 - ISS-RAD will use the light ion calibration curve for our data products.

Energy Deposited (MeV)

Slope of the calibration depends on the choice of ions; an effect of quenching.

• We end up with two possible calibration curves, one for light and stopping ions and

- This essentially covers stopping protons and ⁴He with ΔE up to 500 MeV.

D tor Protons

- used when RAD is in science mode.
- We went to IUCF and re-calibrated D for stopping protons.
 - us on the fly.
 - between 18 and 120 MeV.

NSRL has a beam structure which is generally throws off the dead time calculations

C. Zeitlin analyzed the data overnight and in realtime, producing new EVIL tables for

• D is very dense, around 20 g/cm², and will stop protons with energies between

Scintillating Detector: E

- 123 and 134 MeV.
 - parameters should be used.
- Calibration techniques are similar to D.
 - the DH penetrating particle calibration.

The E detector presents 1.8 g/cm² and will stop protons with energies between

The large majority of particles that traverse E will therefore be penetrating particles, and so (unlike D) there is little or no question about which set of calibration

Gain factors were calculated using a mix of high-energy ions similar to that used for

Anti-coincidence: C2, F1, F2

- Primarily used for veto logic for neutral particle analysis; for that purpose the most important aspect of each is the slow token threshold setting.
- The Level 2 trigger defines a neutral particle event in E as being an energy deposit above threshold in E with no corresponding hits in B, C, C2, F1, or F2, based on the slow token mask.
 - An incorrect (too high) setting could allow in contamination from charged-particle events, or could (if it is too low) cause valid neutral particle events to be rejected. make use of calibrated energy deposits in these detectors for analysis of neutral-
- - Thus the slow threshold setting affects the results at the hardware level. Though the emphasis for these channels is on their thresholds, the Level 3 logic does particle candidate events.

C2 Calibration

- energy can be accurately calculated from first principles.
- For calibration purposes, we use the 2-hit peak in beam data. pedestal

• C2 consists of two segments of the B diode wired together with one segment of the C diode (Si); calibration is straightforward, the relation between pulse height and deposited

C2H Pulse Height (ADC Counts)

17

Charge Resolution

Requirements

- The CPD is required to provide data with charge resolution of ± 2 charge units for particles with energies above 500 MeV/n.
- Beam data taken at the NSRL demonstrate that the inherent resolution of the CPD exceeds this requirement for monoenergetic particles.
- In flight, there is a fundamental, unavoidable limitation on charge resolution of about ± 2 charge units that has nothing to do with intrinsic resolution.

Intrinsic Resolution

Intrinsic resolution of the system for monoenergetic ions can be seen to be well under 1 charge unit.

A2L+BL+CL Scaled to Z

Expected Resolution

• Limited charge resolution in the space radiation environment; determined by the overlapping ΔE distributions of different ions at different energies, but we are within the allotted 2e units.

Energy Deposited in D (MeV)

Results from Ground Analysis Software

Heavy ion flux: Fe, 200 Mev/n

- Above Level 2 trigger matches from a run at NSRL in June 2014.
 - The drop in rates around 20:24 and 20:38 are due to beam-accesses.
 - Note that after each access, the beam intensity dropped.
- Below heavy ion flux (from CPD).
 - Accurately reflects the environment and the ions recorded by the CPD.

 $2014-06-04\ 20:08:06 \rightarrow 2014-06-04\ 21:06:08$

23

Heavy ion flux: O, 200 Mev/n

results are good.

• Another heavy ion run taken at NSRL in Oct. 2014, much more stable environment;

LETwater Spectra

- During a calibration run, RAD usually has one or several Timepix units in front of the RSH (not necessarily directly in front). • We run parasitically off each other to share
 - beam time at various facilities.
 - There are four Timepix units in the picture to the right.
- The direct effect is that ISS-RAD measures a dE/dx larger than the nominal LET for an incident beam.
 - In some cases, the beam was not-clean and the "conversion" to differential spectra makes the distribution appear dirtier than it actually is.

LETwater Spectrum: Fe, 1 GeV/n

- For 963 MeV/n Fe at NSRL:
 - Nominal LET_{Water} ~ 151.6 keV/µm.
- We measured LET_{Water} ~167.3 keV/ μ m.
 - ▶ Bin is [152.8, 181.7) keV/µm.

LETwater Spectra

137Cs on CPD Dosimetry

Ď_{H₂O} [μGy/min]

- For our setup, the expected dose rate in B, calculated using measurements from a calibrated ion chamber, should be ~2.35µGy/min.
 - ISS-TEPCs calibrated in identical fashion.
- On average, B measured $\sim 2.5 \mu Gy/min$; we see excellent performance.
- E performs as expected.
 - 137 Cs decays to 662 keV γ 's.
 - E has a threshold of ~2MeV; which is above the edge of noise.
 - Many particles stop in BGO.
- Health-wise:
 - Average front-end live rate is 97.7%.
 - L2 dosimetry counters show that measurements are within hardware capabilities.

 10^{-2}

28

 10^{-1}

Summary

- The flight model of ISS-RAD should have gold status on United Airlines from its many calibration campaign trips to NSRL, IUCF, and PTB. Alas, it does not.
- Previous experience with MSL-RAD has been incredibly useful in calibrating the RSH, which was calibrated primarily using beam data and trial and error.
 - Calibration results reflect on our current best estimates; we are able to adjust or refine parameters after flight data have been received and analyzed.
- RAD measures omnidirectional doses in both Si and plastic.
 - They track each other well considering the statistical noise in the silicon measurement.
- We are ready for ISS-RAD!

References

- 1. C. Zeitlin, Calibration and Configuration of ISS RAD. 16343 CC 0.
- Analysis Software. SRAG-INT-RAD-2015-001.

2. R. Rios, Validation and Verification of the Radiation Assessment Detector's Ground

Additional Material

CAD Model

Fast Neutron Detector Sensor

> Fast Neutron Detector Electronics

Position Sensitivity and Triggering

L2 Trigger Matches	Description	Information	
0	A1U·BU	A1 histogram	
1	A2·BU	A2 histogram	
2	A1M·BM	A1 histogram	
3	A2M·BM	A2 histogram	
4	BU	B dosimetry	
5	EU·EN	E dosimetry	
6	EU·EN·!AC	E histogram	
7	DU·DN·!AC	D histogram	
8	EU·EN·DU·DN·!AC	DE histogram	
9	DL (∆E>1 GeV)	Heavy ion	
10	Penetrating charged particles.*		
11	Stopping charged particles through A1.*		
12	Stopping charged particles through A2.*		
13	!F1·!F2·!E·!D·B	Stopping particles in B or C; neutral in B.*	
14	Event count with fast but not slow triggers.		
15	Catchall		

* - Counter only no readout.

SSD-A1

AC-C2

Signal Processing in the Radiation Assessment Detector for MSL - Stephan Böttcher

Proton Flux Bins and Dosimetry Conversion Factors

Proton Flux Band	Energy Range [MeV]	Combined E/G Factor	
1	20 - 34	12.57	
2	35 - 71	32.33	
3	72 - 122	44.9	1

k-bins

1 - 5

6 - 9

0 - 12

Tissue equivalent conversion factor for B dosimetry is 1.23

B Dosimetry

- B dosimetry trigger doesn't require any particular geometry, just any hit above noise.
- Dosimetry picks up charged particles from all directions, as well as γ -rays and neutrons with limited efficiency.

E Dosimetry

- RAD reads out all E channels whenever there's a hit above threshold in EH and EL in coincidence.
 - EH and EL refer to high and low gains.
 - This coincidence criterion avoids spurious triggers when a γ -ray hits a single diode (rather than hitting the scintillator) and gives an apparent large energy deposit.
- Like B, the E dosimetry trigger doesn't require any particular geometry, just any hit above noise.
- Again, the dosimetry trigger picks up charged particles from all directions, as well as γ -rays and neutrons.
- E is more efficient for neutrons than B and less efficient for γ 's.

Data Acquisition

- science mode, where data is partially analyzed on-board the detector.
 - The data structure is highly complex but is well-documented & described.
 - There are 45 data packets in this mode; mostly used for data analysis.
 - data in non-volatile memory.
- which is used to both process and analyze data.

 The concept of operations for ISS-RAD onboard ISS is that it will only operate in • We anticipate ~50MB/week of science mode data; RAD is capable of storing ~4GB of

• We have two independently developed codes that can read the data; in operations we'll use the Ground Analysis Software (GAS) developed by Big Head Endian,

SiSSDs: A1, A2, B, C

 Each detector is read out by four VIRENA (Voltage-Input Readout for Nuclear) Applications) channels - Low, Medium, High, and Ultra-high.

Detector	Low Gain	Medium Gain	High Gain	Ultra-High Gain
A1, A2, B	x1	x8	x1	x8
С	x1	x4	x1	x8

- Note: The VIRENA has 36 readout channels; only 32 are used.
- report a ΔE of 100 keV as 50 units.

• The CPD uses unconventional units for ΔE : 2 keV units; e.g., the firmware would

F1, F2

- In the plastic anti-coincidence system, F1 is the upper, barrel-shaped part; F2 is bottom part. • F2 is expected to have calibration nearly identical to that of the E high-gain channels. • The gain of F2L is about equal to that of EH, and that of F2H should be about the same as
- EU.
 - Both detectors are made of the same material and are 1.8 cm thick; both have 1 pF feedback capacitors in their preamplifiers and both have a first-stage shaping amplifier with x16 gain. Beam data can be used to check the gains because high-energy charged particles deposit nearly equal energies in the two detectors as they pass through.
- F1's readout channels are not as easy to calibrate in the usual beam configuration, since most particles do not hit F1 and even those that do have unknown paths through the plastic. However, the F1 channels are expected to have the same calibration as the corresponding F2 channels, because the detectors are composed of the same material in the same thickness, with
- identical nominal gains in the electronics.
 - Therefore, the table entries for the F1L and F1H gains have been set equal to those for F2L and F2H, respectively.

y, n⁰ Products: AmBe

- Neutral data are analyzed by software written by Jan Köhler; very similar to MSL-RAD's analysis software.
- Here are the results using AmBe collected at PTB Apr. 2015.
 - No high-energy γ 's were measured by CPD.

Data Product

n^o absorbed dose

Result

 $0.00376451 \mp 0.000587954 \mu Gy$

n^o dose equivalent

 $0.0201704 \mp 0.00482871 \,\mu\text{Sv}$

