

Recent Radiation Environment Studies aboard Biological Satellites

V.A. Shurshakov¹, O.A. Ivanova¹, R. Machrafi², E.A. Dovdopolaya³, K.O. Inozemtsev^{1,3}, V.V. Kushin^{1,3}, R.V. Tolocheck¹, I.S. Kartsev¹, S.G.Drobyshev¹, and T.Dachev⁴

¹Institute of Biomedical Problems Russian Academy of Sciences, Moscow, Russia ²University of Ontario Institute of Technology, Oshawa, Canada ³National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russia ⁴Space Research and Technology Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria

> 20th WRMISS, Cologne, Germany September 8th – 10th 2015

International Collaboration

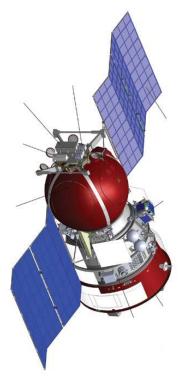
Passive detectors

- **IBMP** (TLD and TLD+TASTRACK)
- NIRS, Chiba, Japan (TLD + CR-39)
- Nuclear Physics institute, Prague, Czech Republic (TLD + CR-39)
- **DLR** (TLD + CR-39)
- **MTA EK**, Budapest, Hungary (TLD + CR-39)
- Oklahoma State University, USA (CR-39)
- **Thessaloniki University**, Greece (Mosfet detectors)
- UOIT, Ontario, Canada, Bubble detectors

Active detectors

SRTI BAN, Sofia Bulgaria

• RD3-B3 dosimeter (silicone detector)


Recoverable capsule

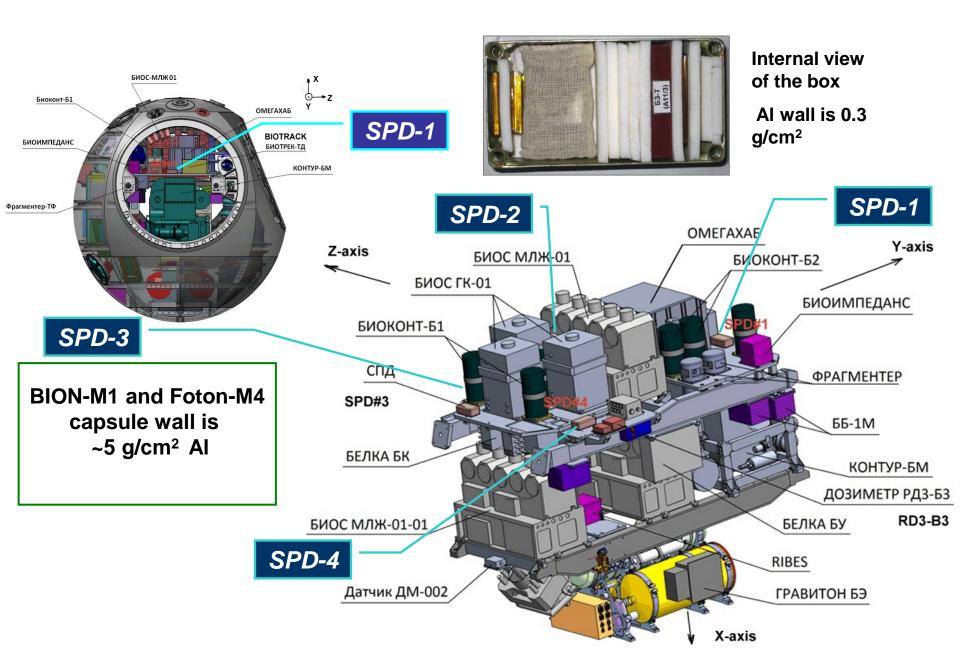
Orbit parameters for recoverable biological satellites

Parameter	Bion-M1	Foton-M4	Bion-M2
Flight dates	April 19 – May 19, 2013	July 19 – September 1, 2014	In 2020
Flight duration, days	30	45	30
Orbit inclination, °	64.8	64.5	51.6 or 64.8
Apogee, km	583	565	~1000
Perigee, km	563	260	~800
Orientation stabilization	Yes	Yes	Yes
Passive detectors (inside and outside)	Yes	Yes	Yes
Active detectors inside	Yes	Yes	Yes
Active detectors outside	No	No	Yes

Radiation dosimetry instruments used aboard Biosatellites

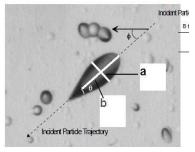
Passive detectors inside the capsule in 4 SPD boxes

Battery powered RD3-B3 silicon dosimeter inside


Space qualified Bubble detectors

Passive detectors on the outer surface of the capsule in special containers

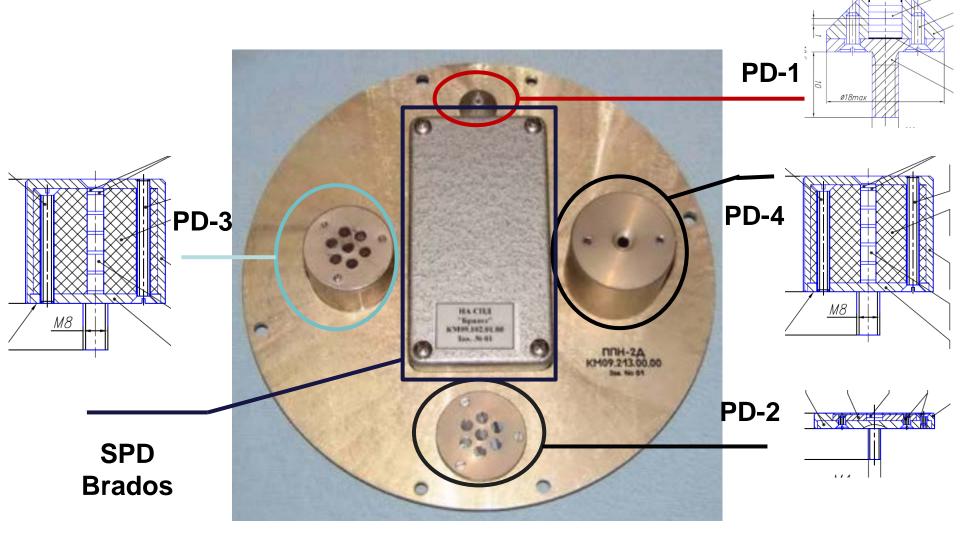
Locations of SPD Boxes inside BION-M1 Satellite


Absorbed and equivalent dose rates and quality factors inside the Bion-M1 recovery module as measured by SPD assemblies

Assembly ##	Absorbed	Equivalent	Radiation	$D_{max}/D_{min} \sim 2.5$	
	dose rate,	dose rate,	quality factor		
	mGy/day	mSv/day	ICRP 60	$H_{max}/H_{min} \sim 1.7$	
SPD # 1	2.4 ± 0.2	3.4 <u>+</u> 0.2	1.4 ± 0.2		
SPD # 2	1.1 ± 0.1	2.0 ± 0.1	1.7 ± 0.2	Typical ISS dose ~0.25 mGy/day	
SPD # 3	1.6 ± 0.2	2.6 ± 0.2	1.8 ± 0.2		
SPD # 4	2.0 ± 0.1	3.1 <u>+</u> 0.1	1.6 ± 0.1	$D_{Bion}/D_{ISS} = 6$	

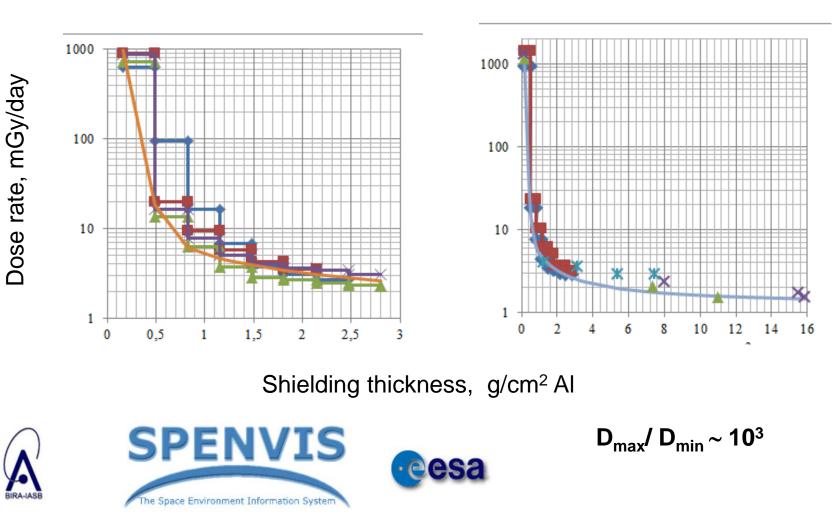
Combined method TLD (LiF:Mg,Ti) and SSTD (CR-39 Tastrack 30x30x1) mm³

Inozemtsev K.O., Kushin V.V., et al., 2014

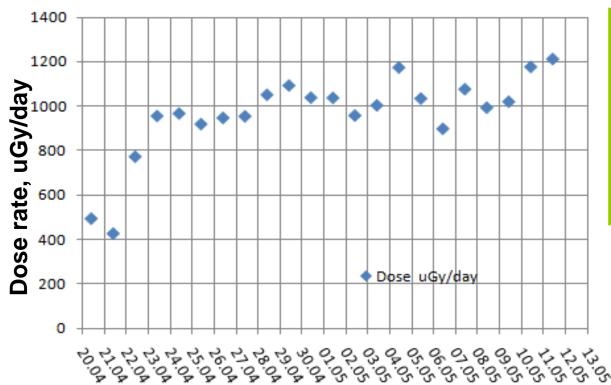

Locations of TLD and SSTD packages on the outer surface in special containers

Detector packages on the outer surface of the Biosatellites

Thermal damage of the detector packages on the outer surface of the Biosatellites

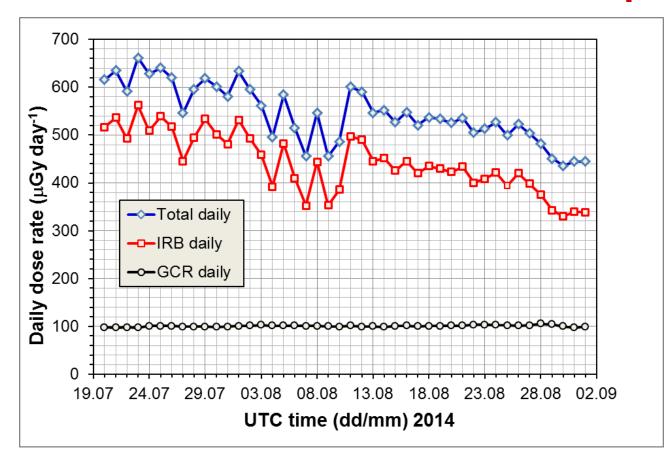


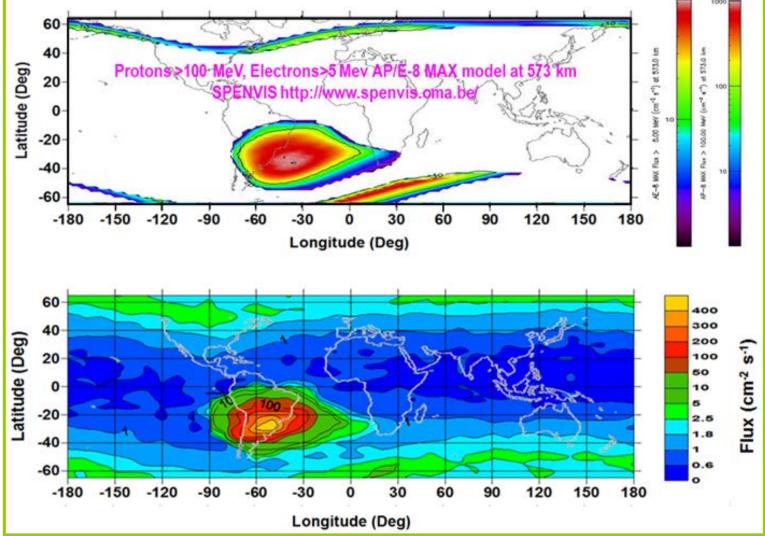
Uncontrolled temperature conditions caused the detector annealing in some containers


Example of Measured and Calculated Depth-dose Curves

KNA-B #1 (lid)

KNA-B #2 (lid)


Bion-M1 dose rate as obtained by RD3-B3 instrument inside the recoverable capsule


<D> = 1.1±0.1 mGy/day <D_{GCR}> = 0.1 mGy/day <D_{ERB}> = 1.0 mGy/day

Foton-M4 dose rate as obtained by RD3-B3 instrument inside the recoverable capsule

$$<$$
D> = 0.55±0.05 mGy/day
 $<$ D_{GCR}> = 0.10 mGy/day
 $<$ D_{ERB}> = 0.45 mGy/day

Comparison of Global Proton Flux Distribution Obtained by RD3-B3 aboard Bion-M1 and AE/AP model data

13

Bubble detectors inside the Biosatellite

Before flight: no bubbles in the bulb

Bubble Reader was used exactly at the landing place

After the flight: a lot of bubbles!

Bubble detector dose rate is 0.12±0.01 mSv/day (the same as for ISS!), Averaged SPD dose rate is ~2.5 mSv/day H_n/H_z < 5 % !

Comparison of neutron dose rates inside different space vehicles

Year	Spacecraft	Orbit parameters			Dose
		Apogee,	Perigee,	Inclination	rate,
		km	km		uSv/day
1989	Bion-9*	294	216	82.3	130
1993	Bion-10*	397	226	62.8	227
1993	Mir*	419	399	51.6	149
1996	Bion-11*	401	225	62.8	130
2006	ISS	370	350	51.6	100
2013	ISS	430	410	51.6	180
2013	Bion-M1	585	565	64.8	116
2014	Foton-M4	565	260	64.5	70

*The data are borrowed from Yu.A. Akatov's archives. Measurements performed in cooperation with Bubble Technology Industries Inc., Canada.

Correction factor of 1.62 was applied to all data to account difference of AmBe neutron source from energy spectrum of space neutrons

Concluding Remarks

- A special radiation dosimetry study was carried out on board the Bion-M1 and Foton-M4 biological satellites by international partners in 2013 and 2014
- Only a part of the results has been presented here:
 - Space radiation doses were measured inside and outside the recoverable capsule with passive detectors (TLD and STD) and inside the satellites with active Si detector
 - Absorbed doses measured outside the satellites vary from 1 Gy/day to 0.3 mGy/day as dependent on the detector shielding
 - Internal doses are about 6 times higher that that in ISS and have the following variation scale, Dmax/ Dmin ~ 2.5, and Hmax/ Hmin ~ 1.7
 - Both aboard Bion-M1 and Foton-M4, measured neutron dose are about 5% of charged-particle doses

Concluding Remarks (2)

- The Bion-M4 and Fotom-M4 space experiments should be followed by detailed data analysis and intercomparison
- In the next Bion-M2 mission
 - Modernization of the outside containers to provide power supple for active instruments is necessary
 - New active instruments should be used inside and outside the satellite
 - Neutron dose measurements should continued with spectrometric detectors
 - The lessons learned should be accounted for the future space experiment aboard Bion-M2 in 2020
- New international collaboration team should be established

The End

