Overview of TLD and OSL measurements at SCK•CEN in the framework of the DOSIS and DOSIS 3D and the most recent biological experiments

Olivier Van Hoey, Filip Vanhavere, Werner Schoonjans

The Belgian Nuclear Research Center SCK•CEN, Mol, Belgium

ovhoey@sckcen.be

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Outline

- Methodology
- Experiments
 - DOSIS and DOSIS 3D
 - Biological experiments
- Conclusions and outlook

Radiation doses in space are much higher than on earth

- Radiation doses in space are much higher than on earth
- ⇒ Important to assess the effects of space radiation on humans, non-human biota and on-board instrumentation

- Radiation doses in space are much higher than on earth
- ⇒ Important to assess the effects of space radiation on humans, non-human biota and on-board instrumentation
- Radiation fields in space are more complex than on earth

- Radiation doses in space are much higher than on earth
- ⇒ Important to assess the effects of space radiation on humans, non-human biota and on-board instrumentation
- Radiation fields in space are more complex than on earth
- \Rightarrow A combination of different detectors is required to cover the whole LET spectrum

- Radiation doses in space are much higher than on earth
- ⇒ Important to assess the effects of space radiation on humans, non-human biota and on-board instrumentation
- Radiation fields in space are more complex than on earth
- \Rightarrow A combination of different detectors is required to cover the whole LET spectrum
- Passive and compact dosimetry can be provided by the combination of TLDs, OSLDs and track-etch detectors

Methodology

Detector types

- TLD Poland
- LiF:Mg,Ti: MTS-N, MTS-6 and MTS-7
- LiF:Mg,Cu,P: MCP-N, MCP-6 and MCP-7

- Detector types
 - TLD Poland
 - LiF:Mg,Ti: MTS-N, MTS-6 and MTS-7
 - LiF:Mg,Cu,P: MCP-N, MCP-6 and MCP-7
- Annealing
 - LiF:Mg,Ti: 1h at 400°C, 2h at 100°C, slow cooling
 - LiF:Mg,Cu,P: 10min 240°C, fast cooling

Detector types

- TLD Poland
- LiF:Mg,Ti: MTS-N, MTS-6 and MTS-7
- LiF:Mg,Cu,P: MCP-N, MCP-6 and MCP-7
- Annealing
 - LiF:Mg,Ti: 1h at 400°C, 2h at 100°C, slow cooling
 - LiF:Mg,Cu,P: 10min 240°C, fast cooling
- Reading
 - Harshaw 5500
 - 1°C/s heating rate
 - No preheat

- Detector type
 - Landauer
 - Al₂O₃:C: Luxel

- Detector type
 - Landauer
 - Al₂O₃:C: Luxel
- Bleaching
 - One day exposure to ambient light

- Detector type
 - Landauer
 - Al₂O₃:C: Luxel
- Bleaching
 - One day exposure to ambient light
- Reading
 - 488 nm Ar⁺ laser
 - 120 mW/cm²
 - 100 s CW-OSL

Calibration and background

Calibration and background

Calibration

- Separate detector group from same batch
- 40 mGy ⁶⁰Co in the middle of the flight
- Individual sensitivity factor determined in advance for the TLDs
- Doses expressed in terms of absorbed dose in water

Calibration and background

Calibration

- Separate detector group from same batch
- 40 mGy ⁶⁰Co in the middle of the flight
- Individual sensitivity factor determined in advance for the TLDs
- Doses expressed in terms of absorbed dose in water

Background

- Two separate detector groups from same batch
- First group travels to launch site and back as background for boxes
- Second group stays at SCK•CEN as background for the calibration

Experiments

I. DOSIS and DOSIS 3D

DOSIS and DOSIS 3D

DOSIS and DOSIS 3D

Multilateral project lead by DLR

- Multilateral project lead by DLR
- Monitoring the radiation environment in the Columbus module of the International Space Station

- Multilateral project lead by DLR
- Monitoring the radiation environment in the Columbus module of the International Space Station
- Study of the spatial and temporal variations in the radiation field

- Multilateral project lead by DLR
- Monitoring the radiation environment in the Columbus module of the International Space Station
- Study of the spatial and temporal variations in the radiation field
- Variety of passive and active detectors

Columbus module

[1] Thomas Berger, presentation at WRMISS 2014

Passive detector packages

[1] Thomas Berger, presentation at WRMISS 2014

Passive detector packages

[1] Thomas Berger, presentation at WRMISS 2014
Absorbed dose in water measured with TLDs and OSLDs

- Absorbed dose in water measured with TLDs and OSLDs
- Average: 250 µGy/day

- Absorbed dose in water measured with TLDs and OSLDs
- Average: 250 µGy/day
- Standard deviation: 17%

- Absorbed dose in water measured with TLDs and OSLDs
- Average: 250 µGy/day
- Standard deviation: 17%
- Minimum: 153 µGy/day

- Absorbed dose in water measured with TLDs and OSLDs
- Average: 250 µGy/day
- Standard deviation: 17%
- Minimum: 153 µGy/day
- Maximum: 389 µGy/day

Daily dose values for each box and detector type normalized to their average over all experiments

Daily dose values for each box and detector type normalized to their average over all experiments

[1] http://www.nmdb.eu/[2] http://cosmicrays.oulu.fi/[3] http://sidc.oma.be/silso/

• ± 30% variation over all experiments

- ± 30% variation over all experiments
- Increasing solar activity => decreasing GCRs

- ± 30% variation over all experiments
- Increasing solar activity => decreasing GCRs
 => lower absorbed dose values

- ± 30% variation over all experiments
- Increasing solar activity => decreasing GCRs
 => lower absorbed dose values
- Increasing ISS altitude => increasing SAA dose

- ± 30% variation over all experiments
- Increasing solar activity => decreasing GCRs
 => lower absorbed dose values
- Increasing ISS altitude => increasing SAA dose => higher absorbed dose values

- ± 30% variation over all experiments
- Increasing solar activity => decreasing GCRs
 => lower absorbed dose values
- Increasing ISS altitude => increasing SAA dose
 => higher absorbed dose values
- Similar trends for different detector types and different boxes

- ± 30% variation over all experiments
- Increasing solar activity => decreasing GCRs
 => lower absorbed dose values
- Increasing ISS altitude => increasing SAA dose
 => higher absorbed dose values
- Similar trends for different detector types and different boxes
- Larger scatter for Luxels

Daily dose values for each experiment and detector type normalized to their average over all boxes

Daily dose values for each experiment and detector type normalized to their average over all boxes

[1] Thomas Berger, presentation at WRMISS 2014

• ± 30% variation over all locations

- ± 30% variation over all locations
- Similar trends for different detector types and different experiments

- ± 30% variation over all locations
- Similar trends for different detector types and different experiments
- Larger scatter for Luxels

Daily dose values for each experiment and box normalized to their average over all detector types

Daily dose values for each experiment and box normalized to their average over all detector types

■ BOX 1 ◆ BOX 2 ▲ BOX 3 × BOX 4 × BOX 5 ● BOX 6 + BOX 7 - BOX 8 - BOX 9 ◆ BOX 10 ■ BOX X

Daily dose values for each experiment and box normalized to their average over all detector types

■ BOX 1 ◆ BOX 2 ▲ BOX 3 × BOX 4 × BOX 5 ● BOX 6 + BOX 7 - BOX 8 - BOX 9 ◆ BOX 10 ■ BOX X

Overview LET dependencies ICCHIBAN 1.50 **Relative efficiency** 1.00 MTS7 MCP7 Luxel 0.50 0.00 0.1 1 10 100 1000 LET [keV/µm]

• ± 35% variation over all detector types

- ± 35% variation over all detector types
- Similar trends for different boxes and different experiments
 - MTS6 > MTS7 > Luxel > MCP6 > MCP7
 - Type 6 > type 7 due to neutron sensitivity
 - MTS > Luxel > MCP due to LET dependence

- ± 35% variation over all detector types
- Similar trends for different boxes and different experiments
 - MTS6 > MTS7 > Luxel > MCP6 > MCP7
 - Type 6 > type 7 due to neutron sensitivity
 - MTS > Luxel > MCP due to LET dependence
- Larger scatter for Luxels
II. Biological experiments

Motivation

Motivation

- Micro-organisms and plants are important for future long flights
 - Recycling of waste and production of food and oxygen
 - Negative effect on the crew health by causing infections
 - Bacteria with biodegradative and biocorrosive properties may jeopardize the integrity of the spatial hardware

Motivation

- Micro-organisms and plants are important for future long flights
 - Recycling of waste and production of food and oxygen
 - Negative effect on the crew health by causing infections
 - Bacteria with biodegradative and biocorrosive properties may jeopardize the integrity of the spatial hardware

Response of micro-organisms and plants to space conditions

- Microgravity
- Vibrations during launch
- Changed electromagnetic field
- Ionizing radiation

• July 18 – September 1 2014

- July 18 September 1 2014
- FOTON-M4 satellite
 - 250 550 km altitude (415 km for ISS)
 - 64.9° inclination (51.6° for ISS)

- July 18 September 1 2014
- FOTON-M4 satellite
 - 250 550 km altitude (415 km for ISS)
 - 64.9° inclination (51.6° for ISS)
- Detectors
 - MTS-6, MTS-7, MCP-6, MCP-7

July 18 – September 1 2014

FOTON-M4 satellite

- 250 550 km altitude (415 km for ISS)
- 64.9° inclination (51.6° for ISS)
- Detectors
 - MTS-6, MTS-7, MCP-6, MCP-7
- Experimental goals
 - NITRIMEL: Microgravity effect on nitrifying MELiSSA bacteria
 - pre-BIOROCK: Microgravity effect on Cupriavidus metallidurans CH34

[1] http://www.spaceflight101.com/

NITRIMEL

pre-BIOROCK

	FOTON-M4	DOSIS 3D V
Average	566 µGy/day	245 µGy/day
Standard deviation	27%	11%
Minimum	329 µGy/day	196 µGy/day
Maximum	1047 µGy/day	313 µGy/day
MTS7/MTS6	1.06	0.92
MCP7/MCP6	0.99	0.94
MTS7/MCP7	1.38	1.20

- Significantly higher absorbed doses compared to ISS
 - Lower shielding
 - Higher altitude
 - Higher inclination

Significantly higher absorbed doses compared to ISS

- Lower shielding
- Higher altitude
- Higher inclination
- MTS7 > MTS6
 - Low statistics
 - Systematic shielding of detectors by each other

Significantly higher absorbed doses compared to ISS

- Lower shielding
- Higher altitude
- Higher inclination
- MTS7 > MTS6
 - Low statistics
 - Systematic shielding of detectors by each other
- MTS/MCP is higher than for DOSIS 3D
 Lower shielding

• September 2 – September 12 2015

- September 2 September 12 2015
- Soyuz 44 => ISS => Soyuz 42

- September 2 September 12 2015
- Soyuz 44 => ISS => Soyuz 42

Detectors

- SCK•CEN: MTS-6, MTS-7, MCP-6, MCP-7
- NPI: CR-39

- September 2 September 12 2015
- Soyuz 44 => ISS => Soyuz 42

Detectors

- SCK•CEN: MTS-6, MTS-7, MCP-6, MCP-7
- NPI: CR-39
- Experimental goals
 - Exposure of key MELiSSA micro-organisms
 - Can they withstand space travel in a metabolically inactive state?
 - Are they fully functional upon reactivation after the flight?

BISTRO

• End 2016

• SpaceX capsule => ISS => Soyuz

• End 2016

SpaceX capsule => ISS => Soyuz

Detectors

- SCK•CEN: MTS-6, MTS-7, MCP-6, MCP-7, Luxel
- NPI: CaSO₄:Dy, Al₂O₃:C, CR-39

• End 2016

SpaceX capsule => ISS => Soyuz

Detectors

- SCK•CEN: MTS-6, MTS-7, MCP-6, MCP-7, Luxel
- NPI: CaSO₄:Dy, Al₂O₃:C, CR-39

• Experimental goals

 Effect of spaceflight conditions on MELiSSA bacteria for CO₂ and nitrate removal and oxygen and biomass production

- SCK•CEN has been involved in many space experiments using TLDs and OSLDs
 - DOSIS and DOSIS 3D
 - Biological experiments

- SCK•CEN has been involved in many space experiments using TLDs and OSLDs
 - DOSIS and DOSIS 3D
 - Biological experiments
- The dose values and their trends with orbital parameters, solar activity, shielding and detector type are consistent

- SCK•CEN has been involved in many space experiments using TLDs and OSLDs
 - DOSIS and DOSIS 3D
 - Biological experiments
- The dose values and their trends with orbital parameters, solar activity, shielding and detector type are consistent
- We will continue to collaborate with the DOSIS 3D and biological experiments

- SCK•CEN has been involved in many space experiments using TLDs and OSLDs
 - DOSIS and DOSIS 3D
 - Biological experiments
- The dose values and their trends with orbital parameters, solar activity, shielding and detector type are consistent
- We will continue to collaborate with the DOSIS 3D and biological experiments
- A PhD student is starting in October 2015 to investigate the LET dependence of glow curves and OSL decay curves

Optically stimulated luminescence detectors

[1] Optically Stimulated Luminescence Dosimetry, Botter-Jensen L., McKeever S. W. S. and Wintle A. G., 2003, Elsevier

Optically stimulated luminescence detectors

[1] Optically Stimulated Luminescence, Fundamentals and Applications, Yukihara E. G. et al., 2011, John Wiley & Sons Ltd

June 29 2015

Helium balloon with instrumentation box attached

- \pm 90 min ascending up to \pm 30 km height
- ± 30 min descending with parachute

June 29 2015

Helium balloon with instrumentation box attached

- \pm 90 min ascending up to \pm 30 km height
- ± 30 min descending with parachute
- Detectors
 - MCP-N
 - EPD-N2
 - Si PIN diode with H rich polymer shield => fast neutrons
 - Si PIN diode with ⁶Li shield => slow neutrons
 - bare Si PIN diode => gamma's (+ electrons, protons, muons ?)

June 29 2015

- Helium balloon with instrumentation box attached
 - \pm 90 min ascending up to \pm 30 km height
 - ± 30 min descending with parachute
- Detectors
 - MCP-N

- Si PIN diode with H rich polymer shield => fast neutrons
- Si PIN diode with 6 Li shield => slow neutrons
- bare Si PIN diode => gamma's (+ electrons, protons, muons ?)

June 29 2015

- Helium balloon with instrumentation box attached
 - \pm 90 min ascending up to \pm 30 km height
 - ± 30 min descending with parachute
- Detectors
 - MCP-N

EPD-N2

- Si PIN diode with H rich polymer shield => fast neutrons
- Si PIN diode with 6 Li shield => slow neutrons
- bare Si PIN diode => gamma's (+ electrons, protons, muons ?)

Experimental goal

Comparison of radiation field on the ground and in the stratosphere

Flight path

Contribution of the different particles to radiation field

[1] ISO 20785-1, Dosimetry for exposures to cosmic radiation in civilian aircraft — Part 2: Characterization of instrument response

Neutron energy spectrum

[1] ISO 20785-1, Dosimetry for exposures to cosmic radiation in civilian aircraft — Part 2: Characterization of instrument response

[1] https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari6m/

 Program developed by the Federal Aviation Administration's Civil Aerospace Medical Institute

[1] https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari6m/

- Program developed by the Federal Aviation Administration's Civil Aerospace Medical Institute
- Calculates the effective dose due to galactic cosmic radiation for a given trajectory

- Program developed by the Federal Aviation Administration's Civil Aerospace Medical Institute
- Calculates the effective dose due to galactic cosmic radiation for a given trajectory
- Total effective dose of 12.8 µSv in two hours

[1] https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari6m/

EPD-N2 results

- 1.5 h with significantly elevated dose rate
- Shown values take into account the EPD-N2's overresponse for the high energy neutron field with factor of ±8 [1]

[1] Radiation Protection Dosimetry (2015), Vol. 163, No. 4, pp. 415–423

- 10.5 µSv neutron dose
- 5 μSv gamma dose (+ electrons, protons, muons ?)
- 15.5 µSv total dose

- 10.5 µSv neutron dose
- 5 µSv gamma dose (+ electrons, protons, muons ?)
- 15.5 µSv total dose
- MCP-N
 - 9.0 ± 0.6 µGy absorbed dose

- 10.5 µSv neutron dose
- 5 µSv gamma dose (+ electrons, protons, muons ?)
- 15.5 µSv total dose
- MCP-N
 - 9.0 ± 0.6 µGy absorbed dose
- CARI-6M prediction
 - 12.8 µSv total effective dose