





#### Updates from the MSL-RAD Experiment on the Curiosity Mars Rover

Cary Zeitlin, Lockheed Martin IS&GS On behalf of the MSL-RAD Science Team



# **RAD Science Team**





- D.M. Hassler<sup>1</sup>, R.F. Wimmer–Schweingruber<sup>2</sup>, J. Appel<sup>2</sup>, E. Böhm<sup>2</sup>, S. Böttcher<sup>2</sup>, D. E. Brinza<sup>3</sup>, S. Burmeister<sup>2</sup>, F.A. Cucinotta<sup>4</sup>, B. Ehresmann<sup>1</sup>, J. Guo<sup>2</sup>, M. Kim<sup>5</sup>, J. Köhler<sup>2</sup>, H. Lohf<sup>2</sup>, C. Martin<sup>2</sup>, A. Posner<sup>6</sup>, S. C. Rafkin<sup>1</sup>, G. Reitz<sup>7</sup>
  - <sup>1</sup>Southwest Research Institute, Boulder
  - <sup>2</sup>Christian Albrechts University, Kiel
  - <sup>3</sup>California Institute of Technology
  - <sup>4</sup>University of Nevada, Las Vegas
  - <sup>5</sup>University Space Research Associates
  - <sup>6</sup>NASA Headquarters
  - <sup>7</sup>German Aerospace Center



# **Curiosity Mission Update**







Just passed 3-year anniversary of landing.
All instruments functioning well.





### Sunspot Observations by Mastcam









### **MSL-RAD**

- Silicon detector telescope with 3 elements (A, B, C).
- Csl scintillator = D.
- Plastic scintillators: E = 1.8 cm, F = 1.2 cm.
- F = anticoincidence, upper (F1) and lower (F2).
- D & E each have 3 readout photodiodes attached.











## MSL-RAD

- Scintillator readout diodes are used in coincidence in triggers (avoids triggering on γ-rays that make a direct hit in diodes).
- DH\*DM\*!F\*!C = neutral
- EH\*EM\*!F\*!C = neutral
- EH\*EM = E dosimetry
- BU = B dosimetry
- Dosimetry triggers accept omnidirectional radiation.













- A2, B, C use inner segment of diodes, A1 uses outer.
- Two fields of view, two geometry factors.
- A2\*B cone has half-angle ~ 18°, G=0.17 cm<sup>2</sup> sr.
- A1\*B cone ~  $30^{\circ}$ , G=0.72 cm<sup>2</sup> sr.
- Use A2\*B events for LET spectrum.



## **RAD Dosimetry Results**









#### Cruise:

- Tissue dose rate = 0.48 +- 0.08 mGy/day, <Q> ~ 3.8
- Dose equivalent rate = 1.8 +- 0.3 mSv/day
- SEP event contribution ~ 14 days of GCR.

#### Surface:

- Tissue dose rate = 0.21 +- 0.03 mGy/day, <Q> ~ 3.0
- Dose equivalent rate = 0.63 +- 0.15 mSv/day
- SEP contribution ~ negligible.



#### Variations Over the First Mars Year





 RAD sees both heliospheric and local effects from the atmosphere (diurnal + seasonal).
 Upcoming talk by J.Guo has details (also paper in ApJ).





### **Diurnal Variations**







Dose rate variations are mainly driven by fragmentation of heavy ions in the atmosphere, which undergoes diurnal variations in column depth.





# **Pressure-Corrected Doses**



 Measured diurnal dependence on atmospheric pressure allows us to back out seasonal effect.

- Improves the anticorrelation with  $\Phi$ .
- Longitudinal separation of Earth & Mars also affects correlation of dose on Mars with Φ.







## $\Phi_{Mars}$ VS. $\Phi_{Earth}$



 Schwadron formula for radial gradient:

 Φ<sub>Mars</sub> ~ 0.9 Φ<sub>Earth</sub>.

 Correlate CRaTER dose rates w/Φ<sub>Earth</sub>, find approximate relation

 D ≅ 420 - 0.4 × Φ<sub>Earth</sub> (µGy/day) when Φ<sub>Earth</sub> isn't too large.
 Apply to Mars





## E Dose Rate







Four small SPE's seen. RAD under average CO<sub>2</sub> column depth of 21 g cm<sup>-2</sup>  $\rightarrow$  proton E > 160 MeV to be detected. Many Forbush decreases. SEP contribution to total dose ~ negligible. Solar rotations clearly seen starting around sol 750. Recent slight increase, is solar max ending?



#### What Drives the Oscillations?







RAD







RAD E, CRaTER on LRO













# GCR Stability in Cycle 24







#### NM Counts Inversely Proportional to Modulation

Very weak maximum  $\rightarrow$  GCR suppression small compared to typical max.





**Historically Weak Solar Max** 





SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2015 August 7









#### Z = 1 Electrons & H Isotopes







Calorimetry useful for particle id. Select slow Z=1 particles that stop in D: hits in A2, B, C, D, but no energy in E or F2. See p, d, t. Electrons below the proton band.



# e+ e- Spectra



Jan Köhler (Kiel) has extracted electron and positron spectra from the surface data. Reasonable agreement with **Planetocosmics** (uses GEANT4 for transport).







### Summary and Conclusions



- RAD made the first measurement of radiation dose on a transit to Mars and continues to work well on the surface.
  - Diurnal and seasonal variations observed.
  - First SEP events observed on another planet.
  - Mars dose rate has been extremely stable.
  - Daniel Matthiä nearing completion of detailed model comparison paper.









 RAD is supported by NASA Advanced Exploration Systems.
 DLR supports the Kiel team.

- > JPL manages the MSL mission.
- Thanks to all for great support.