

An application approach of LET- and charge-weighted quality factors to space LET measurements

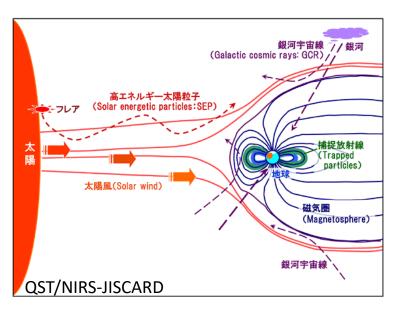
National Institutes for Quantum Science and Technology (QST/NIRS)

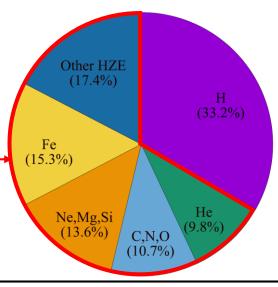
Masayuki Naito, Satoshi Kodaira

Outline

- Space radiation environment & quality factors
- Charge weighted quality factor, Q*
- Q* application to a space LET measurement
- Summary

Space radiation environment

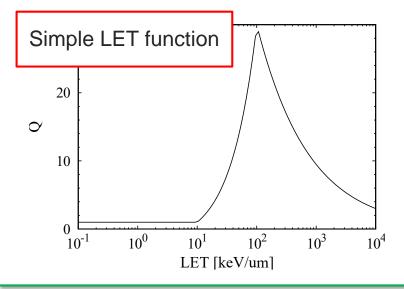

The GCR dose levels in space are ...

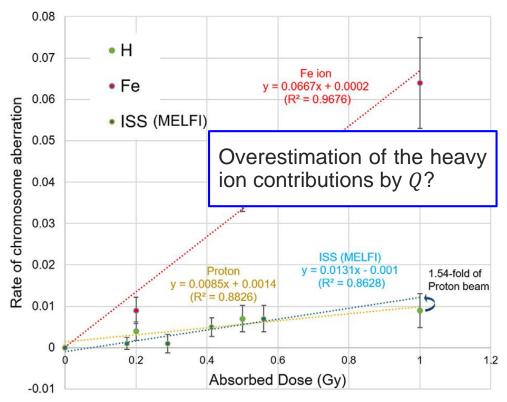

- ~200-300 mSv/yr on the ISS orbit (No atmosphere, Kodaira et al., RM 2013)
- ~600-700 mSv/yr in the deep space (No atmosphere & geomagnetic fields Zeitlin et al., Science 2013)

For long term space stays in future,

- ✓ Dose assessment
- ✓ Radiation shielding
 are crucial from the aspect of radiation.

 10^{3} 10^{4} 10^{3} Absorbed dose [mGy/y] HZE contribution to 10^{2} dose equivalent: >60% 10^{1} 10^{0} 90% of fluence: H 10^{-1} Absorbed dose 10-2 5 Fluence 10^{-3} 25 Charge number


Dose equivalent contribution


The ICRP quality factor

Dose equivalent (H) has been derived from absorbed dose (D) and the ICRP quality factor (Q).

$$H = \Sigma D(LET) \cdot Q(LET)$$

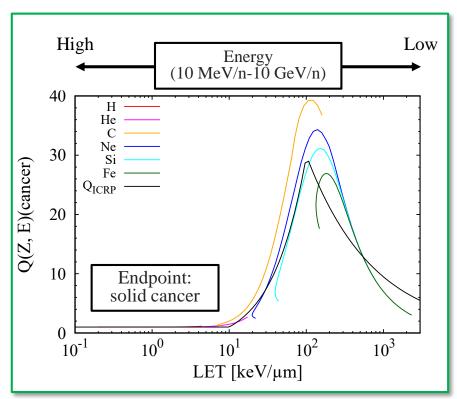
Yoshida et at., Heliyon (2022)

Possible problems are...

- Some researches may imply overestimation of heavy ions
- No updates from 1990

Ions with a specific LET and different charge have a common quality factor

The NASA quality factor



The NASA team has suggested a different quality factor (Q_{NASA}), based on the track structure model (Cucinotta et al., NASA/TP 2013, PLOS ONE 2015).

$$Q_{NASA}(Z,E) = \frac{\frac{6.24\sigma_0/\alpha_\gamma}{LET}P(Z,E)}{\frac{1}{LET}}P(Z,E) + \frac{1}{1} - P(Z,E) \qquad P(Z,E) = \left(1 - \exp\left(-\frac{Z^{*2}}{\kappa\beta^2}\right)\right)^m$$
Track core Track penumbra

- ✓ The charge and LET dependent.

 (Different values at a specific LET with different charge)
- Application to LET measurements of the charged particles is not easy. Some space measurements obtain the LETs without discrimination of particle charges.

Motivation & approach

We suggest a new quality factor, Q*, which is applicable to LET spectra without fundamental changes in the measurement procedures.

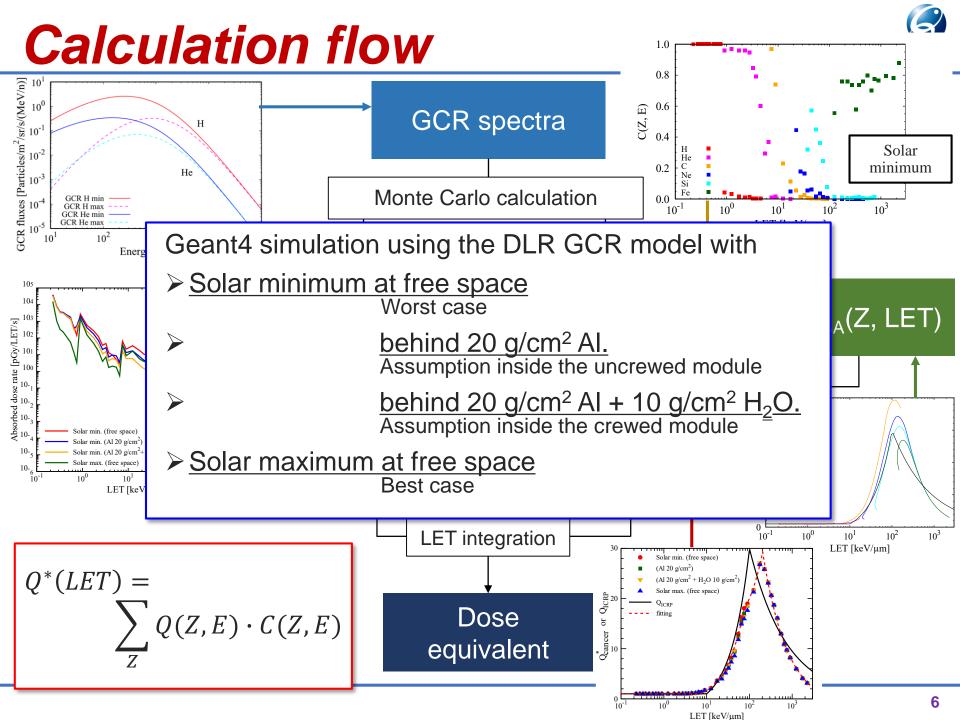
$$H = \sum_{LET} D(LET) \cdot Q(LET)$$

$$H = \sum_{LET} \sum_{Z} D(Z, LET) \cdot Q_{NASA}(Z, LET)$$

$$= \sum_{LET} D(LET) \sum_{Z} \frac{D(Z, LET)}{D(LET)} \cdot Q_{NASA}(Z, LET)$$

$$= \sum_{I \in T} D(LET) \sum_{Z} C(Z, LET) \cdot Q_{NASA}(Z, LET)$$

$$= \sum_{LET} D(LET) \cdot Q^*(LET)$$

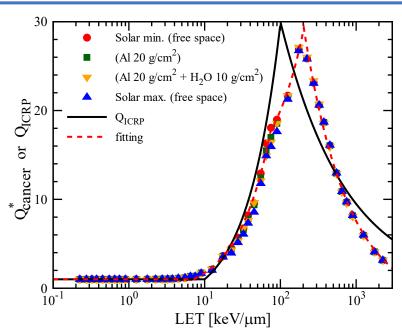

$$D(LET) = \frac{k}{\rho}F(LET) \times LET$$

Charge contribution rates to absorbed dose at the specific LET:

$$C(Z, LET) = \frac{D(Z, LET)}{D(LET)}$$

<u>C(Z, LET)</u> varies with the GCR solar modulation and surrounding shielding.

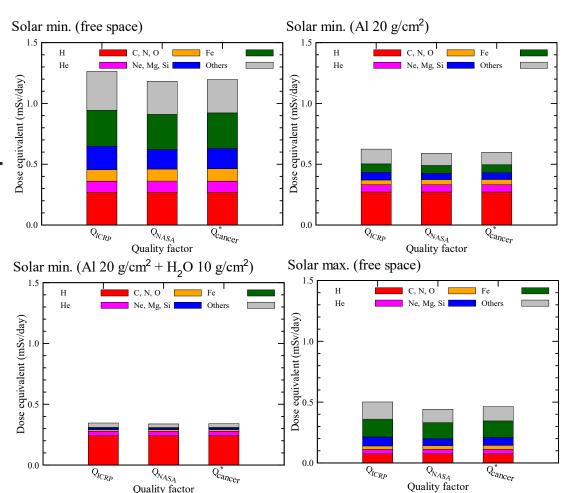
 $\underline{C(Z, LET)}$ values in typical environments were obtained through numerical calculation to identify its variation, determining plausible Q*.



Q* comparison in different GCRs

■ GCR spectra dependencies

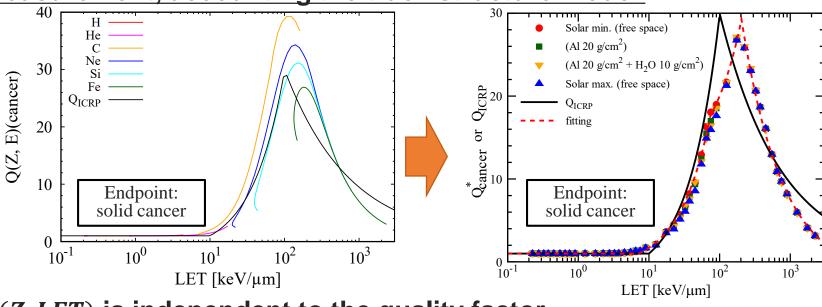
- ✓ Q_{cancer}^* variations at specific LET; <10%
- ✓ Total dose equivalent variation; a few %
- Maximum at the solar minimum at free space
 - ⇔ conservative dose assessment


Comparison of the mean Q_{cancer}^* values applying different GCR energy spectra.

		The GCR energy spectra			
		Solar min. (free space)	Solar min. (20 g/cm² Al)	Solar min. (20 g/cm² Al + 10 g/cm² H ₂ O)	Solar max. (free space)
0° cancer	Solar min. (free space)	2.66	1.64	1.17	3.12
	(20 g/cm ² AI)		1.63		
	(20 g/cm ² Al + 10 g/cm ² H ₂ O)			1.17	
	Solar max. (free space)				3.02

Quality factor comparison

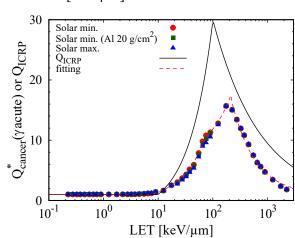
- $ightharpoonup Q_{cancer}^*$ demonstrated the similar dose equivalents and charge contributions to Q_{NASA} .
 - ✓ Successful conversion from the $Q_{NASA}(Z, LET)$ to the $Q^*(LET)$.
- \triangleright Heavy ion contributions in Q_{ICRP} were slightly higher than those in the Q_{NASA} and Due to peak LET difference



Charge contributions to the dose equivalents by the three quality factors, Q_{ICRP} , Q_{NASA} , and Q_{cancer}^* .

Q* advantages

✓ Charge weighted quality factor, Q^* , is applicable to the space LET measurement, accounting the track structure model.



 \checkmark <u>C(Z,LET)</u> is independent to the quality factor.

The Q^* approach is also available for the other RBEs based on different models.

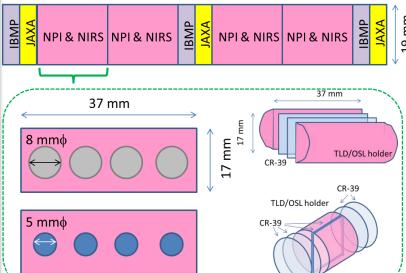
e.g.) $RBE_{\gamma acute}$ model (Cucinotta, LSSR 2015, Edwards, JRP 1999)

$$RBE_{\gamma acute} = DDREF \cdot \frac{6.24\sigma_0/\alpha_{\gamma}}{LET} P(Z, E) + 1 - P(Z, E)$$

Q* application test to measurements

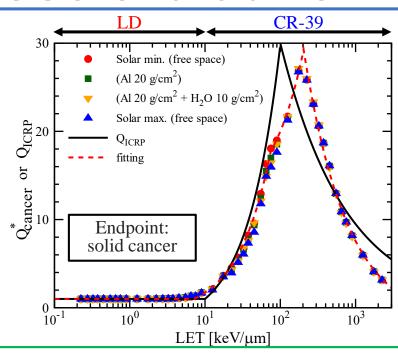
 Q_{cancer}^* was tested by applying the MATROSHKA-R LET measurements.

MATROSHKA-R (MTR) experiment



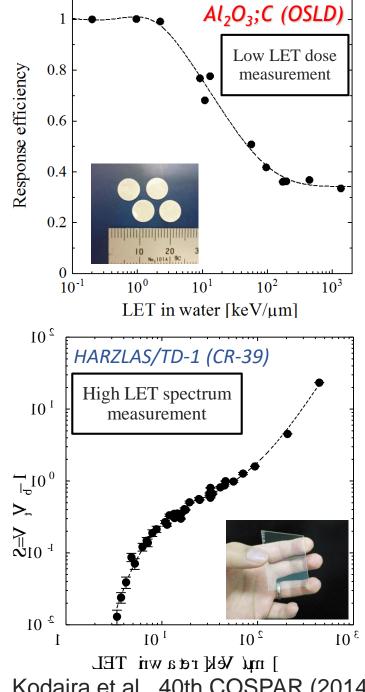
Dose distributions outside/inside a body phantom were measured in the ISS.

Containers


Totally 16 packages were installed in the 4 container rods inside the phantom

Kodaira et al., 40th COSPAR (2014)

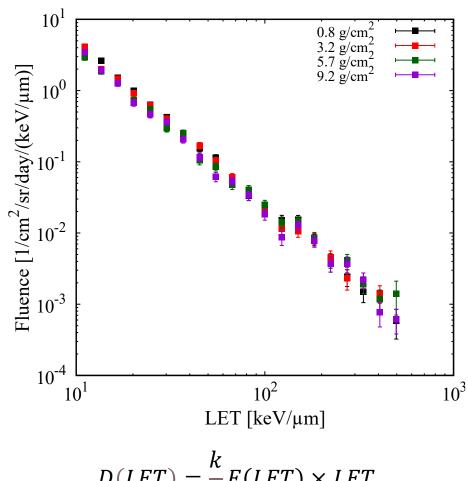
Dose evaluation



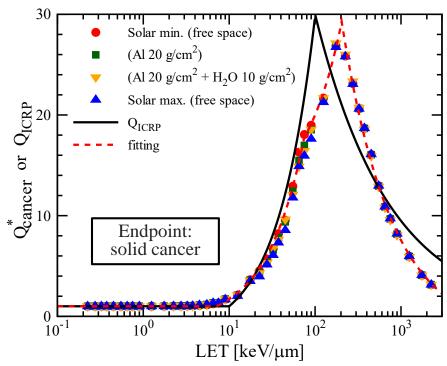
Absorbed dose *D*:

$$\begin{split} D &= D_{\leq 10keV/\mu m} + D_{>10keV/\mu m} \\ &= (D_{LD} - \kappa D_{CR-39}) + D_{CR-39} \\ &= D_{LD} + (1 - \kappa)D_{CR-39} \end{split}$$

Dose equivalent *H*:

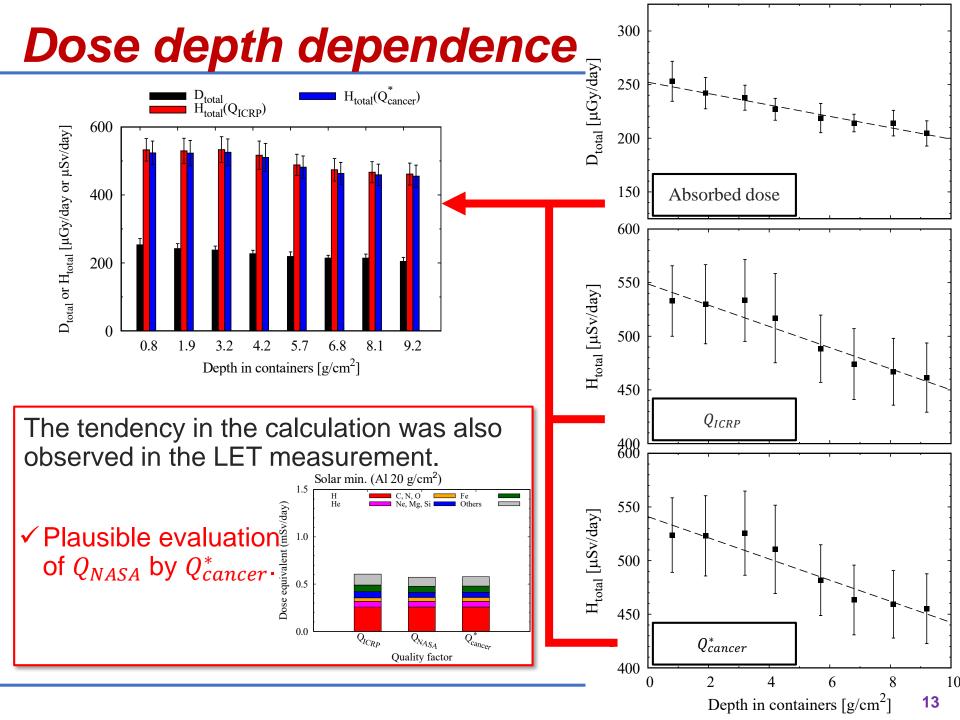

$$H = D_{\leq 10keV/\mu m} + H_{\geq 10keV/\mu m}$$

= $(D_{LD} - \kappa D_{CR-39}) + H_{CR-39}$
 κ : proportional constant
(Doke et al., RM 1995)



Kodaira et al., 40th COSPAR (2014)

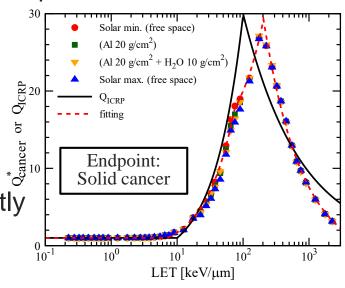
Measured LET spectra

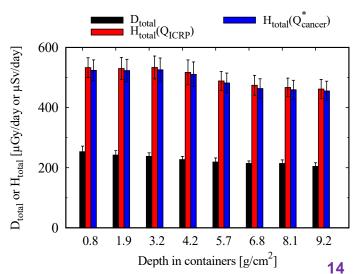


$$D(LET) = \frac{k}{\rho}F(LET) \times LET$$

$$H = \sum_{LET} D(LET) \times Q(LET)$$

Dose equivalents as a function of phantom depth were obtained by the Q_{ICRP} and Q_{cancer}^*




Summary

- ✓ Charge weighted quality factor, Q^* , was suggested to apply the charge and LET dependent quality factor (e.g., Q_{NASA}) to the space LET measurements.
- ✓ Different GCR spectra provided insignificant variation (< a few %) in Q_{cancer}^* .
 - The solar minimum GCR spectra achieved conservative dose assessment.
- $\checkmark Q_{cancer}^*$ derived from Q_{NASA} demonstrated slightly lower contribution of heavy ions than Q_{ICRP} .
 - Consistent with some previous works. (e.g., Yoshida et al., Heliyon 2022, Naito & Kodaira, Scientific Rep. 2022)

 Q_{cancer}^* is applicable for the space dose assessment by LET measurements, providing comparable results to Q_{NASA} , i.e., track structure model quality factor.

Danke schön, thank you!