The Human Interplanetary Exploration Radiation Risk Assessment System (HIERRAS)

Pete Truscott¹, Daniel Heynderickx², Fan Lei³, Daniel Matthiä⁴, Thomas Berger⁴, Osku Raukunen⁵, Rami Vainio⁵, Piers Jiggens⁶, Simon Clucas⁶, Antonis Tsigkanos⁷, and Ingmar Sandberg⁷

(1) Kallisto Consultancy, UK; (2) DH Consultancy, BE; (3) RadMod Research, UK; (4) DLR, DE; (5) University of Turku, FI; (6) ESA-ESTEC, NL; (7) SPARC, GR

Workshop on Radiation Monitoring on International Space Station, Cologne, 2nd-4th September 2025

<u>Sponsored by European Space Agency Technology Research Programme</u> <u>under Contract 4000127129/19/NL/HK, HIERRAS Project</u>

HIERRAS Stakeholder Team

Expert consultation group to provide feedback and guidance

We would like to thank all the stakeholder team members!

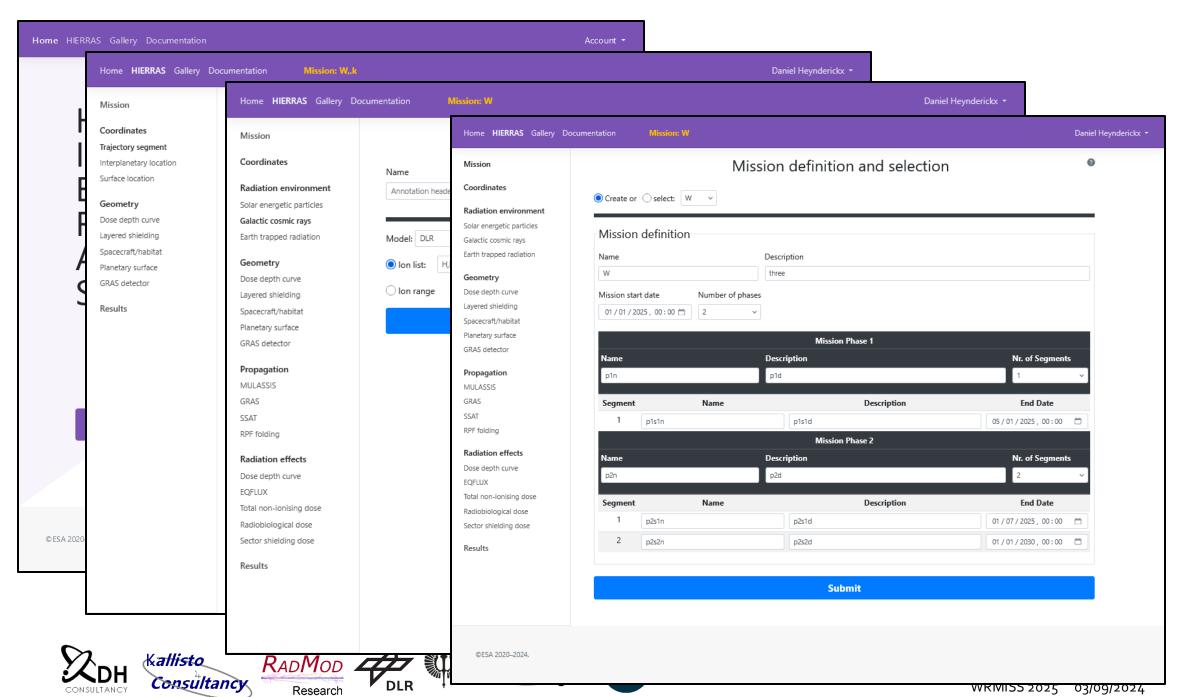
W. Atwell, E.J. Daly, L. Dartnell, H. Evans, A. Fogtman, P. Gonçalvez, M. Giraudo,
 C. Lobascio, S. McKenna-Lawlor, A. McSweeney, L. Narici, P. Nieminen, G. Reitz, R. Singleterry,
 U. Straube, M. Vuolo

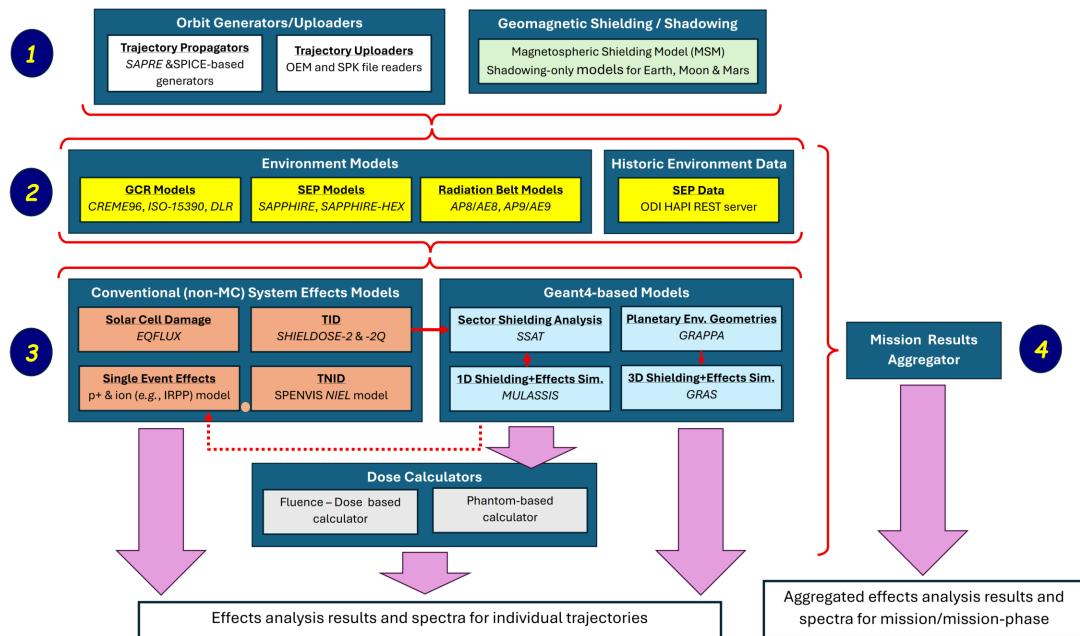
Contents

- 1. Background & objectives
- 2. Models, analysis routes & human exposure quantities
- 3. Geant4 models, response functions and HIERRAS BkgProcessor
- 4. H²UGOS for results traceability
- 5. Mission definition and aggregation
- 6. Time-dependent data and SEPEM Reference Data Set (RDS) data updates
- 7. Example comparisons from validation/verification
- 8. Summary and future work

Background and Objectives

- ESA has several environment and effects modelling suites relevant to component/system radiation effects (e.g., SPENVIS, CIRSOS, SEPEM, ESPREM) – not astronaut exposures
- HIERRAS is a radiation environment specification system for human exploration beyond LEO
- Inclusion of attenuation and secondary production by planetary atmospheres, magnetic fields and material shielding considering realistic spacecraft/habitat geometries and materials
- Determinations of human stochastic (cancer-causing) and tissue reaction (deterministic) dose quantities
- Aid assessment of warning times and hazard level for flux enhancements seen over a mission
- Modular system with clearly defined interfaces
- User-friendly web-based graphical user interface

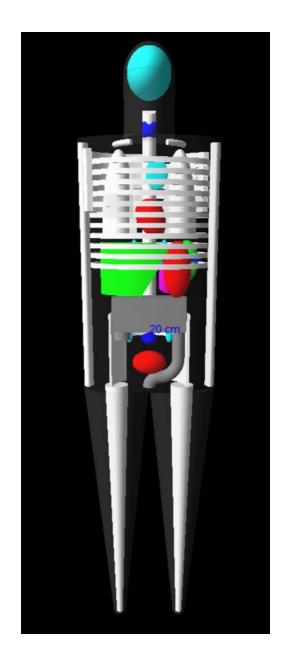


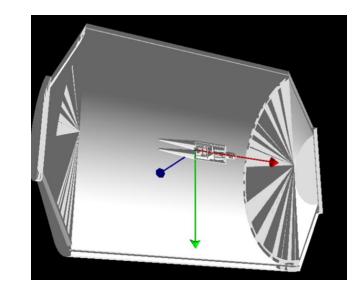


HIERRAS - Models and Analysis Routes

Dose Calculations

- Dose maps, based on fluence-to-dose conversion coefficients:
 - Effective dose, E (ICRP-116)
 - Effective dose equivalent, H_E , using Q(L) or NASA NASA Q(Z,E) factors (ICRP-123)
 - Ambient dose equivalent (ICRP-74)
- Volume detectors
 - Cubes or spheres placed by user in geometry
 - Same dose quantities as dose maps using fluence-to-dose conversion
- Phantom-based calculation
 - Gray-equivalent dose, G_T
 - Dose equivalent, H_{T,Q}
 - Effective dose, E
 - Effective dose equivalent, H_E
 - ORNL's MIRD CSG-based phantom (Snyder et al, 1969) available –
 users may upload better phantoms





Models and Geometries (1)

- Two sources for environment and effects models:
 - ESA's Network of Models (NoM) https://nom.esa.int
 - Provides future proofing since NoM models well maintained, and suite frequently expanded
 - **SPECTIRES Toolkit** in HIERRAS provides many of the same models
- Spacecraft, habitat, planetary environments, phantoms defined as GDML geometry files
- GRAS v6.o:
 - Multi-threaded
 - Robust and simply commands for relative placements of geometries specified in separate GDML files
- MULASSIS v2.0:
 - Non-MCCSDA simulation for heavy ions approximation for thin shields and effects on microelectronics

Models and Geometries (2): What is GRAPPA?

- GRAS Preprocessor for Planetary bodies and Asteroids
- Creates GDML geometry representations of Mars and Moon

Local environment with partially-buried habitat modules (additional GDML files) included in GRAS simulation

Planar and spherical geometries

Sim

G4 Space Apps docker implementation of all

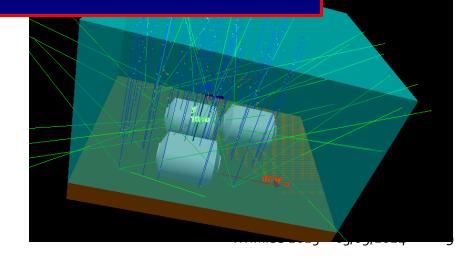
- Can be ESA Geant4 applications used: scales
 - MULASSIS, GRAS, SSAT, GRAPPA
 - Greatly simplifies installation Atm

Treatm

- Precipitates (CO₂ & H₂O)
- Magnetic fields (for Mars)

This approach means that GRAS (or another Geant4) application) can be used for 3D MC simulation

Better maintainability of software



HIERRAS Response Function (RPF) modes

- GRAS & MULASSIS runs can be lengthy, from minutes to several days
- Conventional results have limited reuse
- RPF generation module allow calculation of shielded fluences & doses based on precalculated response functions using MULASSIS or GRAS
 - MULASSIS RPFs: Species, energy, shield-thickness
 - GRAS RPFs: Species & energy
- Allows reuse of lengthy simulation results, e.g., time-dependent environments in subsequent studies

Channel	E _I (MeV/nuc)	E _u (MeV/nuc)	Power Law Index
C1	1.0	10.0	0
C2	10.0	50.0	0
С3	50.0	99.76	-1
C4	99.76	199.05	-1
C5	199.05	397.16	-1
С6	397.16	792.45	-1
С7	792.45	1581.14	-1
C8	1581.14	3154.78	-1
С9	3154.78	6294.63	-1
C10	6294.63	12559.43	-1
C11	12559.43	25059.36	-1
C12	25029.36	50000.0	-1
C13	50000.0	100000.0	-2.7

HDaemon and the Background Job Processor

- BkgProcessor allows asynchronous, parallel GRAS/MULASSIS runs
- Requests are submitted to the BkgProcessor:
 - Application to run and simulation run parameters
 - Start date/time if delay required
 - Dependencies on other jobs completing first
- Monitors progress and sends %-complete to online-user
- Can Email user when complete or if problems occur
- "Super Background Runs"
 - Build radiation shielding response function database
 - Makes use of allocated threads for parallelism
- HIERRAS Administrator can configure:
 - Total processor threads available to BkgProcessor
 - Max threads per user
 - Max job run-time

.... and there is an automated cleaner to remove discarded files from failed runs

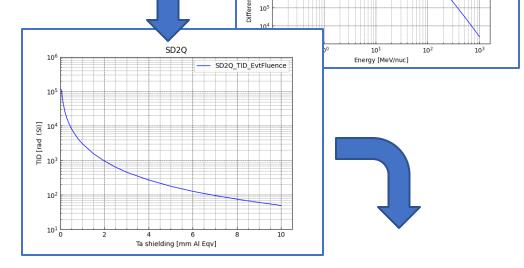
H²UGOS – HIERRAS Handler for Users, Groups and Object Storage

Data Audit Trail Management

MySQL-based database application

Manages user registration information and registration access through a user/org whitelist

Files uploade


Allows comprehensive traceability of run results which File owner may be generated by different users within a project

All associat

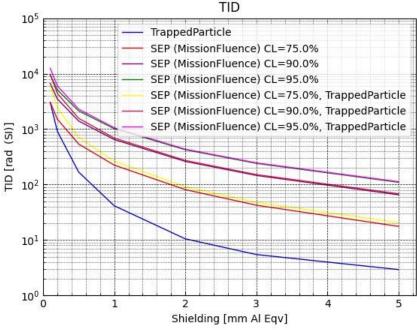
spectrum—sinielaing calculation etc)

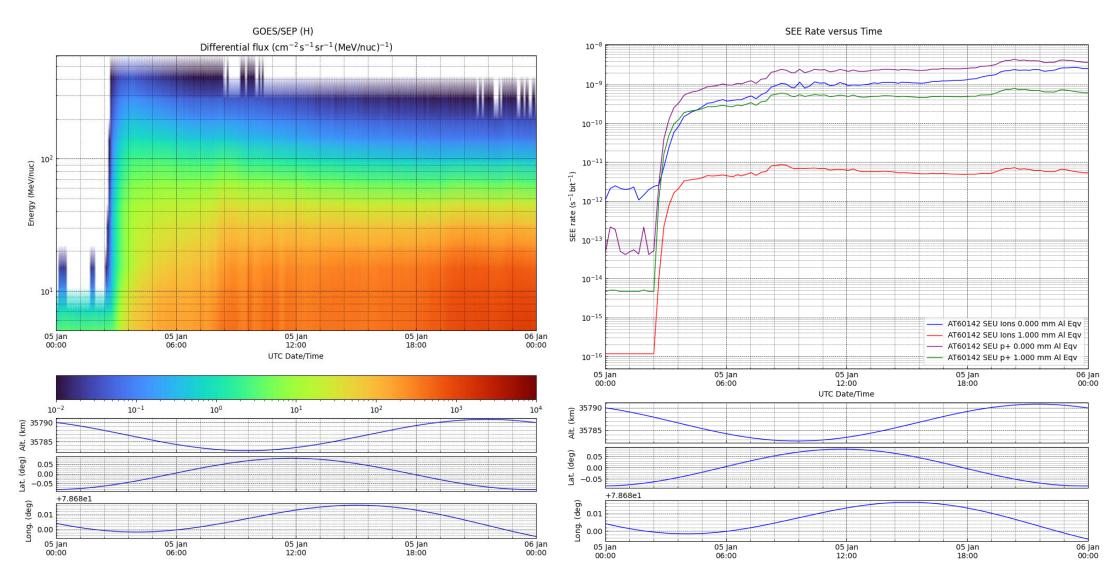
Avoid unintended consequences of deleting file which another user has used for input to their run

- Quick access to auxiliary data
- H²UGOS stores all requests and responses
 - Review of full model run conditions
 - In future can allow re-run capability.

Mission Definition & Aggregation

- Missions defined hierarchically:
 - Mission comprises one or more phases
 - Each phase comprises one or more segments
 - Each segment is defined by one trajectory or characteristic orbit
- H²UGOS maintains associations all these objects
- User can request aggregation of all spectra, TID, TNID, EQFLUX results for mission or phase
 - Calculated per radiation source: GCR, SEP, ...
 - Summed over all sources
- Aggregator will automatically iterate through the combinations of different confidence levels e.g., in SAPPHIRE, AE9 and/or AP9





Example of time dependent HIERRAS results using SEP

GOES/HEPAD data processing and update to SEPEM Reference Data Set

- High Energy Proton and Alpha Detector (HEPAD) onboard GOES6 to GOES15
- Data cleaning and gap filling
- Bow tie analysis to determine reference energies and geometric factors -> updated datasets

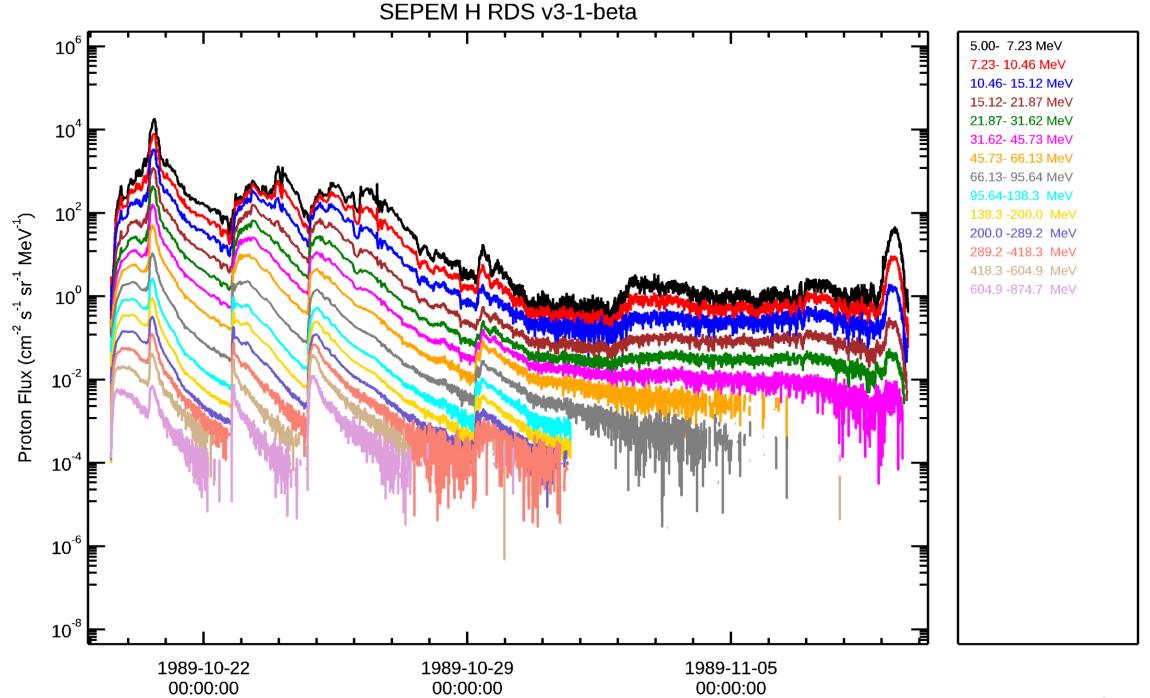
Channel (nominal)	Energy range (MeV) (1986-1994)	Energy range (MeV) (1995->)
P8	355-435	350-420
P9	435-555	420-510
P10	555-760	510-700
P11	>760	>700

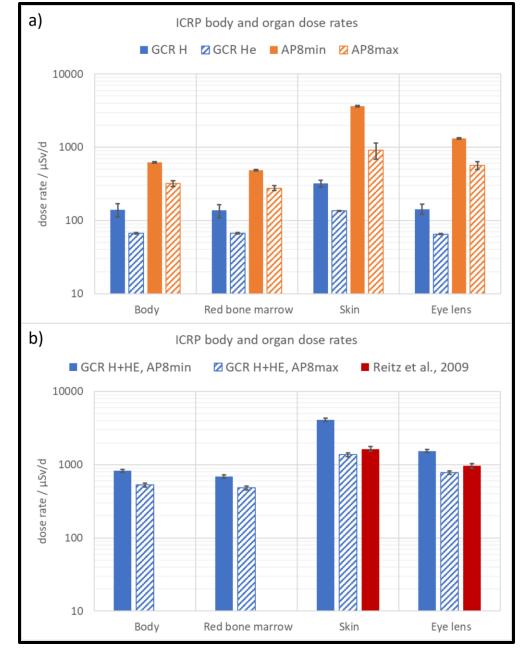
Channel (nominal)	$G\Delta E$ (cm 2 sr MeV) (1986-1994)	$G\Delta E$ (cm 2 sr MeV) (1995->)
P8	77	67.5
P9	48	67.5
P10	369	162

Channel (bow tie)	E _{eff} (MeV) (1986-1994)	<i>GΔE</i> (cm² sr MeV) (1986-1994)	E _{eff} (MeV) (1995->)	$G\Delta E$ (cm 2 sr MeV) (1995->)
P8FR	405	93.2 (-8.1%, +21.7%)	406	110 (-8.2%, +22.4%)
P ₉ FR	473	84.5(-2.2%, +6.3%)	457	66.3(-1.8%,+5.2%)
P10	622	135(-4.1%, +11.7%)	583	136 (-4.3%, +12.3%)

Extended SEPEM RDS channels

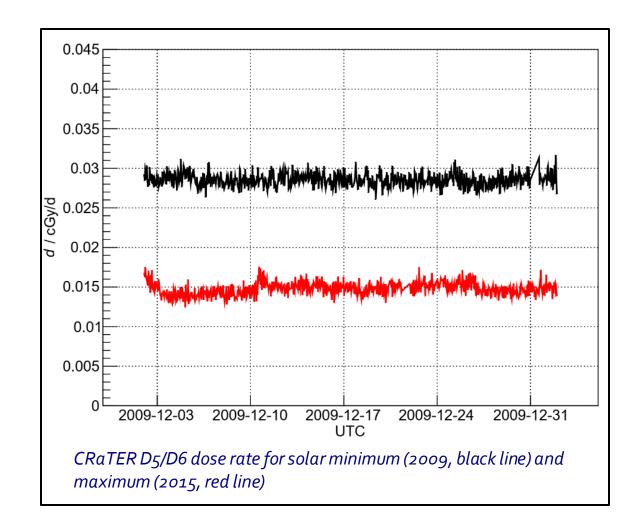
Channel	E	Ε,,	E _c
F1	5.000	7.231	6.013
F ₂	7.231	10.46	8.695
F ₃	10.46	15.12	12.57
F4	15.12	21.87	18.18
F ₅	21.87	31.62	26.30
F6	31.62	45.73	38.03
F ₇	45.73	66.13	54.99
F8	66.13	95.64	79.53
F9	95.64	138.3	115.0
F10	138.3	200.0	166.3
F11	200.0	289.2	240.5
F12	289.2	418.3	347.8
F13	418.3	604.9	503.0
F14	604.9	874.7	727.4





MATROSHKA EVA-related scenario

- 370 km, 51.6° orbit associated with ISS in 2004
- Geomagnetically shielded DLRGCR model for protons and He
- AP8 at max & min
- GRAS calculation of fluences at spherical detector, R=30 cm, surrounded by carbon sphere, R=45 cm, thickness=2.3 mm
- ICRP-123 fluence-to-dose conversion factors:
 - Effective dose equivalent, H_E (column 1, "Body")
 - Dose equivalent, H_{T,Q}(columns 2-4)



CRaTER Instrument / Lunar Reconnaissance Orbiter (LRO)

- 2-Day 50km lunar orbit
- DLR GCR model proton & He flux with lunar shadowing
- MULASSIS (1D) geometry with:
 - 2 mm spherical Al shield
 - 1 mm spherical Si detector

HIERRAS results (cGy/d):

- Solar minimum:
 - H = 0.0112 ±0.0003
 - He = 0.0044 ±0.0001
- Solar maximum:
 - $H = 0.0044 \pm 0.0001$
 - He = 0.0021 ±<0.0001</p>

Summary

- HIERRAS System is already a comprehensive web-based environment to predict human radiation exposure quantities for complete missions, addressing:
 - Trajectory definition & environment specification from models and historic in situ data
 - Geant4 1D and 3D radiation transport simulation in spacecraft, habitats and planetary/lunar environments
 - Dose calculations based on fluence/dose coefficients, or absorbed doses in phantom
 - TID, TNID, solar cell degradation and SEE rates
- Comprehensive and user-friendly GUI
- The system includes:
 - Modularised with well-defined interfaces improves upgradability
 - Use of Network of Models makes future adaptation to alternative/newer models easier
 - Can treat analyses at fine-detailed levels & aggregate results to mission-level
 - Background processing of lengthy Geant4 runs with notification to user of progress
 - Results data traceability audit trail

Future Developments for TRL > 4

- Further work required to extend/complete the intended range of analysis
 - Time-dependent radiobiological dose analysis
 - Completion of aggregation analysis:
 - Treatment of astronaut occupancy levels
 - Human exposure quantities for different phases
 - Error analysis incl. propagation through each calculation stage
 - Update to be compatible with G4 11.3-based ESA apps and latest NoM
 - Improve/optimize CPU load-balancing for multi-threaded + multi-user cases
- SEP forecasting models
- Improve focus of output quantities relevant to human exposures for S/C design, mission planning, and mission operation
- Improve and test general useability, robustness, & consistency of system/results required for higher TRL levels

Thank you for your attention!

Additional Material

G4 Space Apps Docker

- Installation of Geant4 and ESA G4 models can be a challenge!
- G4 Space Apps: Highly portable Linux virtual machine comprising:
 - Geant4 toolkit and data files
 - ESA Geant4 tools:
 - GRAS (3D shielding and effects simulation)
 - MULASSIS (multi-layered 1D shielding simulation)
 - SSAT (sector shielding analysis)
 - CIRVis (interactive 3D geometry visualisation)
 - MAGNETOCOSMICS
 - GRAPPA with MCD v5.3
 - All system libraries to run these applications
- Very easy to distribute, install and run on Windows or Linux OS
- HIERRAS and NoM System use of G₄ Space Apps Docker

- MULASSIS:
 - docker run --rm -it -v "<<host_vol>>:/opt/g4pub"
 --name g4exe g4_space_apps mulassis
 <<macrofile>>
- GRAS:
 - docker run --rm -it -v "<<host_vol>>:/opt/g4pub"
 --name g4exe g4_space_apps gras <<macrofile>>
- Execution of docker in "server mode" on a Linux docker host
 - docker run --rm -it -v "<<host_vol >>:/opt/g4pub"
 --name g4_exe g4_space_apps server
 - sshpass -p g4user ssh g4user@<<g4_exe_IP>>
 'cd /opt/g4pub; mulassis <<macrofile>>'

