

Update on radiations measurements on the surface of Mars conducted with MSL/RAD

Bent Ehresmann Southwest Research Institute (SwRI) Boulder 7 September 2022

The RAD Instrument (Overview)

- RAD is a charged & neutral particle analyzer operating on the surface of Mars since 2012
- RAD detects *absorbed dose* in *B* (Si) & *E* (tissue-equivalent plastic) detectors
- LET in Si is measured in B in coincidence with A (also Si)
- Neutral particles are detected in scintillators D (CsI) & E
- Charged particle fluxes & spectra are determined in A E

RAD Dose Rate Measurements during the MSL mission

- Surface radiation nominally dominated by GCRs
- Atmospheric shielding above RAD ~20 - 23 g/cm^2

 RAD absorbed dose rates (in E) have ranged from ~210 µGy/day in 2012 (near weak solar max) to 315 µGy/day in Mar / Apr 20 (deep solar min)

U

RAD Dose Rate Measurements – Evolution throughout the Solar Cycle

- What does a 50% increase in absorbed dose mean for Mars exploration?
- Increase from near (weak) solar max to deep solar min
- RAD can give indications by providing dose equivalent

- Dose equivalent: Absorbed dose x Q(LET)
- Aimed to provide a measurement-based estimate of the biological effectiveness of the radiation

RAD Dose Rate Measurements – Evolution throughout the Solar Cycle

While absorbed
 dose increases by
 50%, <Q> decreases
 by 25%

 As a result, dose equivalent on Mars only increased by 13%

... 13-30% for a sample Mars reference mission with transit

/	Quantity	Solar minimum of Cycle 24/5 (measured from	Near solar maximum of Cycle 24 (measured from	Ratio of solar minimum /
5		28 Nov 2019 to 3 October 2020)	7 August 2012 to 1 June 2013)	maximum of Cycle 24
	Absorbed dose rate Average quality factor < O>	0.314 mGy/d 2.3	0.21 mGy/d ^a 3.05 ^a	1.49 0.75
5	Dose equivalent rate	0.72 mSv/d	0.64 mSv/d ^a	1.13
1	500 days of Mars surface mission	0.36 Sv	0.32 Sv ^a	1.13
	2 × 180 days of transit Earth – Mars	0.64–0.80 Sv	0.57 Sv ^b	1.13–1.40
5	Total mission dose equivalent	1–1.2 Sv	0.9 Sv ^{a,b}	1.13–1.30
1	contributions)			

Results from Ehresmann et al. (2022), Icarus (in press).

 Note: Results are based strictly on RAD measurements & don't consider stay in bases, astronaut suits or skin doses

RAD Dose Rate Measurements during the MSL mission

- Occasionally,
 SEP events can dominate the dose rate (red circles)
- Increases usually on the order of hours to days
- RAD has directly observed 7 SEP events so far

 The two strongest events were seen in Oct '21 & Feb '22: ascending phase of solar max

RAD Solar Particle Event Measurements

- Measuring effects of SEP events at Mars is crucial for space weather & human exploration
- In particular, when Earth & Mars are magnetically well-separated!
- following • RAD can answer the questions:
- How much dose did the event deliver?
 - ...on the surface of Mars behind ~20 g/cm^2 shielding
- What is the timing of the event?
 - onset time, peak time, duration...
- How did the particle spectra change during the event
 - intensity, temporal evolution...

Planetary locations during the Sep 2017 event

The 28 October '21 Event seen by RAD

 On Oct 28 2021 the sun emitted an X1 flare at ~ 15:17 h UTC, followed by a halo-CME

AU

halo-CME
 Earth & Mars were separated by ~180° ... yet the event was still seen at both planets

- Earth & Mars were both connected to the flanks of the CME
- Increase in dose at Mars ~17 18 h UTC
- At Earth, seen around the same time
- Earliest increase seen by Stereo-A (best connection to nose of CME)

- On Mars, peak at ~ 22-23:30 h UTC
- Pre-event levels reached: morning of 30 Oct
- Peak dose (E) increase:
 x2.25 to 670 µGy/day
- Increase in B slightly higher (x3)

 The event delivered ~ 1 day's worth of GCR background dose: ~0.2 mGy in Si (RAMIS saw 2.2 mGy in Si Earth's orbit)

The 15/16 February '22 Event seen by RAD

- Massive, far-side CME released on 15/16 Feb 22
- Earth & Mars were separated by ~135°
- Event was seen by RAD but not at Earth

- Mars connected to the flank of the CME
- Increase in dose at Mars ~23 h UTC (15 Feb)
- RAMIS only saw small increase in counts
- Seen or detected by other spacecraft (PSP, Bepi, SolO)

The 28 October '21 Event seen by RAD

- RAD pek period: 2 6 h UTC (16 Feb)
- Pre-event levels: 17 Feb ~ 12 h UTC Dose Rate [uGy / day
- Peak dose (E) increase: x3.4 to 1 mGy/day!
- higher Increase B in (x4.5 - 5)

 The event delivered ~ 1.5-2 days worth of GCR background dose: ~0.35 mGy in Si

Regolith Shielding by Topography

- Natural terrain on Mars can serve as shield to reduce radiation dose
- Incoming GCRs can lose energy in the rock formation
- Overall net decrease in dose

 RAD observes this effect when driving / parking close to topography shielding out parts of the sky

First Proof of Radiation Shielding on Mars at Murray Buttes

30

25

20

15

ucted View (from Horizon)

- First observed when RAD parked near the Murray Butte
- The butte blocked out 19% of the sky around RAD

Angle of obstruction around RAD at Murray Butte

 4-5% decrease in dose rate & 7.5% in neutral particles

Radiation Shielding on Mars by Natural Terrain

• We find this effect whenever, RAD is near obstructing topography

Sols 1456-67: Murray Butte M12. Average angle of obstruction: ~ 11°. Dose decrease: ~4-5% Sols 2658-92 & 2734-42: Tower Buttes area. Average angle of obstruction: ~ 6-8.5°. Dose decrease: ~3% Sols 2798-2802: Bloodstone Hill. Average angle of obstruction: TBD. Dose decrease: ~5% Sols 3050-3090: Mt Mercou area. Average angle of obstruction: multiple instances, including highest-to-date. Dose decrease: >8-10%

- The amount of shielding effect depends on both the obstruction in the vertical and azimuthal
- Taken together, we can determine how much of the 2π sky was blocked out & what the average angle (in the zenith) of obstruction was

RAD Acknowledgments

RAD is supported by NASA (SMD/Heliophysics and HEOMD/AES) under JPL subcontract #1273039 to SwRI.

 ...and by DLR in Germany under contract with Christian-Albrechts-Universitat (CAU).

Contact: ehresmann@boulder.swri.edu