

25th WRMISS in Mons, Belgium

September 6 -8, 2022

Local Organizing Team: Patrice Mégret (University of Mons) Mariline Mura (University of Mons) Olivier Van Hoey (Belgian Nuclear Research Center SCK CEN)

Imaging Radiation Particle Trajectories at Micron Resolution: Applications for ISS and Beyond

Premkumar B. Saganti, Ph. D.

Regents Professor – Texas A&M University System Radiation Institute for Science and Engineering (RaISE) A Texas A&M Chancellor's Research Initiative (CRI) *Prairie View A&M University* <u>www.pvamu.edu/raise</u>

Cucinotta / Saganti: 2001

http://srhp.jsc.nasa.gov/

ACE: Example of Carbon data (~ 25 years) with prediction for solar cycle # 25

© Kallur / Erickson / Saganti - 2021

Marcin Sagani, Lockheed Į R. Conner Ledit: Frank Cucinetta, Johnson Space

Peggy Whitson 3rd Longest Duration with 289 days at ISS in 2017 More time in space by any American / woman ~ 666 days (over 3 expeditions)

Next Mission – on Axiom-02 (2023)

10 EVAs (~ 60 hrs outside ISS)

EXPERIMENTS WITH CARBON IONS

BNL (USA) HIMAC (JAPAN)

An Overview -

Radiation Track Structure at Micron Level of Carbon Ions

Radiation Track at 1.67 micron per pixel resolution for carbon ion with 300 MeV/n and LET 50 keV/μm (approximately 100x50 pixels are shown from about 3600x2700 pixel image)

Track Structure Detector

Sensor Dimensions: 0.644 cm (H) x 0.461 cm (V) Active Pixels: 3664(H) x 2748(V); 10,068,672 Pixel Size: 1.67 x 1.67 μm

Orientation of the detector changed remotely (90 degrees)

1 🗃 🖬 🚳 | 🗞 🔍 🕲 🕲 🖑 🖌 - | 🗔 | 🔲 📰 🛄 🛄

2

Live imaging of the C ion particles (90 degrees)

Frame number:

Orientation of the detector changed remotely (45 degrees)

Orientation of the detector changed remotely (0 degrees)

Live Imaging of the Tracks

Run10.avi

End

.AVI

Track Structure for LET 13 and 25 (keV/ μ m)

Detector	LET (keV/μm)	Attenuation	Dose-Rate (Gy/min)	Count	Reference
0 degrees	13	1/300	0.00066	2	Run-19
0 degrees	degrees 13		0.03910	70	Run-20
0 degrees	13	1/30	0.41752	525	Run-21

Detector	LET	Attenuation	Dose-Rate	Count	Reference	
0 degrees	25	1/300	0.00066	2	Run-22	
0 degrees	25	1/100	0.03910	70	Run-23	
0 degrees 25		1/30	0.41752	525	Run-24	

Detector	LET	Attenuation	Dose-Rate	Count	Reference
0 degrees	50	1/300	0.00066	2	Run-25
0 degrees	50	1/100	0.03910	70	Run-26
0 degrees	50	1/30	0.41752	525	Run-27

C-290

(LET = $13 \text{ keV}/\mu m$ and attenuation, ATT = 1/300)

3664x2748 pixels @ 1.67 microns/pixel A total of 10,068,672 pixels in an array of 0.644 cm x 0.461 cm

C-290

(LET = $13 \text{ keV}/\mu m$ and attenuation, ATT = 1/100)

3664x2748 pixels @ 1.67 microns/pixel A total of 10,068,672 pixels in an array of 0.644 cm x 0.461 cm

<u>C 200</u>

C-290

(LET = $13 \text{ keV/}\mu\text{m}$ and attenuation, ATT = 1/30)

3664x2748 pixels @ 1.67 microns/pixel A total of 10,068,672 pixels in an array of 0.644 cm x 0.461 cm

Count = 525 ions

C 200

C-125

(LET = 25 keV/μm and attenuation, ATT = 1/300)

3664x2748 pixels @ 1.67 microns/pixel A total of 10,068,672 pixels in an array of 0.644 cm x 0.461 cm

<u>C 175</u>

C-125

(LET = **25 keV/μm** and attenuation, ATT = 1/100)

3664x2748 pixels @ 1.67 microns/pixel A total of 10,068,672 pixels in an array of 0.644 cm x 0.461 cm

Count = 70 ions

<u>C 175</u>

C-125

(LET = 25 keV/µm and attenuation, ATT = 1/30)

3664x2748 pixels @ 1.67 microns/pixel A total of 10,068,672 pixels in an array of 0.644 cm x 0.461 cm

<u>C 125</u>

Individual Tracks (13 vs 25 keV/µm)

13 keV/µm

													/	
R: 11 G: 11 B: 11	R: 12 G: 12 B: 12	R: 11 G: 11 B: 11												
R: 11 G: 11 B: 11	R: 12 G: 12 B: 12	R: 11 G: 11 B: 11	R: 12 G: 12 B: 12	R: 11 G: 11 B: 11	R: 11 G: 11 B: 11	R: 11 G: 11 B: 11								
R: 12 G: 12 B: 12	R: 11 G: 11 B: 11	R: 12 G: 12 B: 12	R: 13 G: 13 B: 13	R: 11 G: 11 B: 11	R: 11 G: 11 B: 11									
R: 40 G: 40 B: 40	R: 32 G: 32 B: 32	R: 51 G: 51 B: 51	R: 36 G: 36 B: 36	R: 45 G: 45 B: 45	R: 72 G: 72 B: 72	R:130 G:130 B:130	R: 53 G: 53 B: 53	R: 26 G: 26 B: 26	R: 30 G: 30 B: 30	R: 28 G: 28 B: 28	R: 58 G: 58 B: 58	R: 20 G: 20 B: 20	R: 14 G: 14 B: 14	
R:182 G:182 B:182	R:181 G:181 B:181	R:188 G:188 B:188	R:170 G:170 B:170	R:179 G:179 B:179	R:179 G:179 B:179	R:175 G:175 B:175	R:178 G:178 B:178	R:183 G:183 B:183	R:174 G:174 B:174	R:182 G:182 B:182	R:170 G:170 B:170	R:179 G:179 B:179	R:169 G:169 B:169	
R: 17 G: 17 B: 17	R: 16 G: 16 B: 16	R: 19 G: 19 B: 19	R: 18 G: 18 B: 18	R: 19 G: 19 B: 19	R: 27 G: 27 B: 27	R: 32 G: 32 B: 32	R: 36 G: 36 B: 36	R: 16 G: 16 B: 16	R: 16 G: 16 B: 16	R: 15 G: 15 B: 15	R: 16 G: 16 B: 16	R: 13 G: 13 B: 13	R: 14 G: 14 B: 14	
R: 11 G: 11 B: 11	R: 12 G: 12 B: 12	R: 11 G: 11 B: 11	R: 11 G: 11 B: 11											
R: 11 G: 11 B: 11	R: 11 G: 11 B: 11	R: 12 G: 12 B: 12	R: 11 G: 11 B: 11	R: 12 G: 12 B: 12	R: 11 G: 11 B: 11	R: 11 G: 11 B: 11								
R: 11 G: 11 B: 11	R: 11 G: 11 B: 11	R: 10 G: 10 B: 10	R: 11 G: 11 B: 11	R: 10 G: 10 B: 10	R: 11 G: 11 B: 11									

C-290

(LET = 13 keV/ μ m and attenuation, ATT = 1/300)

R: 11	R: 12	R: 11																	
G: 11	G: 12	G: 11																	
B: 11	B: 12	B: 11																	
R: 11	R: 11	R: 11	R: 11	R: 12	R: 11	R: 12	R: 11												
G: 11	G: 11	G: 11	G: 11	G: 12	G: 11	G: 12	G: 11												
B: 11	B: 11	B: 11	B: 11	B: 12	B: 11	B: 12	B: 11												
R: 11	R: 11	R: 11	R: 12	R: 11	R: 12	R: 13	R: 11												
G: 11	G: 11	G: 11	G: 12	G: 11	G: 12	G: 13	G: 11												
B: 11	B: 11	B: 11	B: 12	B: 11	B: 12	B: 13	B: 11												
R: 12	R: 29	R: 39	R: 40	R: 32	R: 51	R: 36	R: 45	R: 72	R:130	R: 53	R: 26	R: 30	R: 28	R: 58	R: 20	R: 14	R: 30	R: 17	R: 26
G: 12	G: 29	G: 39	G: 40	G: 32	G: 51	G: 36	G: 45	G: 72	G:130	G: 53	G: 26	G: 30	G: 28	G: 58	G: 20	G: 14	G: 30	G: 17	G: 26
B: 12	B: 29	B: 39	B: 40	B: 32	B: 51	B: 36	B: 45	B: 72	B:130	B: 53	B: 26	B: 30	B: 28	B: 58	B: 20	B: 14	B: 30	B: 17	B: 26
R: 70	R:173	R:188	R:182	R:181	R:188	R:170	R:179	R:179	R:175	R:178	R:183	R:174	R:182	R:170	R:179	R:169	R:173	R:170	R:177
G: 70	G:173	G:188	G:182	G:181	G:188	G:170	G:179	G:179	G:175	G:178	G:183	G:174	G:182	G:170	G:179	G:169	G:173	G:170	G:177
B: 70	B:173	B:188	B:182	B:181	B:188	B:170	B:179	B:179	B:175	B:178	B:183	B:174	B:182	B:170	B:179	B:169	B:173	B:170	B:177
R: 12	R: 14	R: 18	R: 17	R: 16	R: 19	R: 18	R: 19	R: 27	R: 32	R: 36	R: 16	R: 16	R: 15	R: 16	R: 13	R: 14	R: 20	R: 21	R: 25
G: 12	G: 14	G: 18	G: 17	G: 16	G: 19	G: 18	G: 19	G: 27	G: 32	G: 36	G: 16	G: 16	G: 15	G: 16	G: 13	G: 14	G: 20	G: 21	G: 25
B: 12	B: 14	B: 18	B: 17	B: 16	B: 19	B: 18	B: 19	B: 27	B: 32	B: 36	B: 16	B: 16	B: 15	B: 16	B: 13	B: 14	B: 20	B: 21	B: 25
R: 11	R: 12	R: 11																	
G: 11	G: 12	G: 11																	
B: 11	B: 12	B: 11																	
R: 11	R: 12	R: 11	R: 12	R: 11	R: 11	R: 11	R: 12	R: 11											
G: 11	G: 12	G: 11	G: 12	G: 11	G: 11	G: 11	G: 12	G: 11											
B: 11	B: 12	B: 11	B: 12	B: 11	B: 11	B: 11	B: 12	B: 11											
R: 11	R: 10	R: 11	R: 10	R: 11	R: 11	R: 11	R: 11												
G: 11	G: 10	G: 11	G: 10	G: 11	G: 11	G: 11	G: 11												
B: 11	B: 10	B: 11	B: 10	B: 11	B: 11	B: 11	B: 11												

25 keV/μm

C-290

(LET = 25 keV/ μ m and attenuation, ATT = 1/300)

R: 11	R: 26	R: 12	R: 11	R: 10	R: 11	R: 11	R: 11												
G: 11	G: 26	G: 12	G: 11	G: 10	G: 11	G: 11	G: 11												
B: 11	B: 26	B: 12	B: 11	B: 10	B: 11	B: 11	B: 11												
R: 33	R: 11	R: 20	R: 14	R: 11	R: 18	R: 13	R: 11	R: 12	R: 12	R: 13	R: 11								
G: 33	G: 11	G: 20	G: 14	G: 11	G: 18	G: 13	G: 11	G: 12	G: 12	G: 13	G: 11								
B: 33	B: 11	B: 20	B: 14	B: 11	B: 18	B: 13	B: 11	B: 12	B: 12	B: 13	B: 11								
R: 90	R: 42	R:100	R: 60	R: 51	R: 49	R: 44	R: 46	R: 43	R: 67	R: 95	R: 54	R: 55	R: 52	R: 46	R: 54	R: 59	R: 73		R: 99
G: 90	G: 42	G:100	G: 60	G: 51	G: 49	G: 44	G: 46	G: 43	G: 67	G: 95	G: 54	G: 55	G: 52	G: 46	G: 54	G: 59	G: 73		G: 99
B: 90	B: 42	B:100	B: 60	B: 51	B: 49	B: 44	B: 46	B: 43	B: 67	B: 95	B: 54	B: 55	B: 52	B: 46	B: 54	B: 59	B: 73		B: 99
R:178	R:177	R:181	R:181	R:173	R:185	R:167	R:187	R:176	R:183	R:175	R:186	R:175	R:179	R:183	R:183	R:182	R:180	R:174	R:176
G:178	G:177	G:181	G:181	G:173	G:185	G:167	G:187	G:176	G:183	G:175	G:186	G:175	G:179	G:183	G:183	G:182	G:180	G:174	G:176
B:178	B:177	B:181	B:181	B:173	B:185	B:167	B:187	B:176	B:183	B:175	B:186	B:175	B:179	B:183	B:183	B:182	B:180	B:174	B:176
R:176	R:191	R:177	R:197	R:177	R:197	R:176	R:190	R:176	R:189	R:181	R:187	R:176	R:191	R:178	R:182	R:177	R:187	R:179	R:181
G:176	G:191	G:177	G:197	G:177	G:197	G:176	G:190	G:176	G:189	G:181	G:187	G:176	G:191	G:178	G:182	G:177	G:187	G:179	G:181
B:176	B:191	B:177	B:197	B:177	B:197	B:176	B:190	B:176	B:189	B:181	B:187	B:176	B:191	B:178	B:182	B:177	B:187	B:179	B:181
R:176	R:187	R:181	R:184	R:186	R:179	R:171	R:183	R:172	R:188	R:181	R:178	R:181	R:182	R:175	R:180	R:182	R:178	R:182	R:183
G:176	G:187	G:181	G:184	G:186	G:179	G:171	G:183	G:172	G:188	G:181	G:178	G:181	G:182	G:175	G:180	G:182	G:178	G:182	G:183
B:176	B:187	B:181	B:184	B:186	B:179	B:171	B:183	B:172	B:188	B:181	B:178	B:181	B:182	B:175	B:180	B:182	B:178	B:182	B:183
R: 19	R: 18	R: 18	R: 17	R: 18	R: 19	R: 21	R: 26	R: 22	R: 18	R: 16	R: 15	R: 15	R: 16	R: 18	R: 16				
G: 19	G: 18	G: 18	G: 17	G: 18	G: 19	G: 21	G: 26	G: 22	G: 18	G: 16	G: 15	G: 15	G: 16	G: 18	G: 16				
B: 19	B: 18	B: 18	B: 17	B: 18	B: 19	B: 21	B: 26	B: 22	B: 18	B: 16	B: 15	B: 15	B: 16	B: 18	B: 16				
R: 11	R: 12	R: 11																	
G: 11	G: 12	G: 11																	
B: 11	B: 12	B: 11																	
R: 11	R: 11	R: 10	R: 11	R: 11	R: 11	R: 12	R: 50	R: 11	R: 12	R: 11	R: 11	R: 11	R: 11						
G: 11	G: 11	G: 10	G: 11	G: 11	G: 11	G: 12	G: 50	G: 11	G: 12	G: 11	G: 11	G: 11	G: 11						
B: 11	B: 11	B: 10	B: 11	B: 11	B: 11	B: 12	B: 50	B: 11	B: 12	B: 11	B: 11	B: 11	B: 11						

Track Structure for LET 13, 25, and 50 (keV/ μ m)

Detector	LET (keV/μm)	Attenuation	Dose-Rate (Gy/min)	Count	Reference	
0 degrees	13	1/300	0.00066	2	Run-19	
0 degrees	13	1/100	0.03910	70	Run-20	
0 degrees	13	1/30	0.41752	525	Run-21	

Detector	LET	Attenuation	Dose-Rate	Count	Reference
0 degrees	25	1/300	0.00066	2	Run-22
0 degrees	25	1/100	0.03910	70	Run-23
0 degrees	25	1/30	0.41752	525	Run-24

Detector	LET	Attenuation	Dose-Rate	Count	Reference	
0 degrees	50	1/300	0.00066	2	Run-25	
0 degrees	50	1/100	0.03910	70	Run-26	
0 degrees	50	1/30	0.41752	525	Run-27	

Individual Track Cross-Sections (LET = 13, 25, and 50 keV/μm)

BIOLOGICAL APPLICATIONS

An Overview

Example - DNA damage foci and pixel image (Wang / Saganti)

- DNA damage foci
 - Live imaging mCherry -53BP1 in mouse hippocampal neuronal cells
 - Staining 53BP1 in mouse hippocampal neuronal cells
 - Zeiss Fluorescent microscope at NSRL
 - Leica Confocal microscope at RaISE

- Pixel image
 - 1.67 um/pixel
 - 10 um each pixel spot and 100 um pixel track

- Foci image
 - 0.16 um/pixel
 - about 1 um each focal spot and 10 um foci track

C-300 MeV: Detector along the beam line (90° alignment) Beam: Dose-Rate = 1 cGy/min, Total Dose = 2cGy

© Wang-Saganti-Holland 2016

C-300 MeV: Detector along the beam line (0° alignment) Beam: Dose-Rate = 1 cGy/min, Total Dose = 2cGy

Mouse Hippocampal neuronal cells (HT22) and Radiation Particle Trajectory (C ions, LET = 50 keV/um) (GFP-LC3)

© Inage Credit – Leica SP8 Confocal System at CRI / RaISE

© Wang / Saganti - 2018

Mouse Hippocampal neuronal cells (HT22) and Radiation Particle Trajectory (C ions, LET = 50 keV/um) (mCherry-53BP1)

© Inage Credit – Leica SP8 Confocal System at CRI / RaISE

© Wang / Saganti - 2018

Mouse Hippocampal neuronal cells (HT22) and Radiation Particle Trajectory (C ions, LET = 50 keV/um) [(GFP-LC3) + (mCherry-53BP1)]

© Inage Credit – Leica SP8 Confocal System at CRI / RaISE

© Wang / Saganti - 2018

Carbon Ion Facilities in the WORLD (Year Commissioned)

	COUNTRY			Max Energy	Start of
	COUNTRY	WHO; WHERE	PARIICLE	(MeV)	Treatment
1	Japan	HIMAC, QST, Chiba	C-ion	S 800/u	1994
2	Japan	HIBMC, Hyogo	C-ion	S 320/u	2002
3	Germany	HIT, Heidelberg	C-ion	S 430/u	2009
4	Japan	GHMC, Gunma	C-ion	S 400/u	2010
5	Italy	CNAO, Pavia	C-ion	S 480/u	2012
6	Japan	SAGA-HIMAT, Tosu	C-ion	S 400/u	2013
7	China	SPHIC, Shanghai	C-ion	S 430/u	2014
8	Germany	MIT, Marburg	C-ion	S 430/u	2015
9	Japan	iRKCC, Yokohama	C-ion	S 430/u	2015
10	Japan	OHITC, Osaka	C-ion	S 430/u	2018
11	Austria	MedAustron, Wiener Neustadt	C-ion	S 403/u	2019
12	China	HICTC, Wuwei, Gansu	C-ion	S 400/u	2019

~ 12 Facilities

Around the World In **5** Countries

(1994 - Present)

Data Taken From PTCOG © Saganti-2021

Radiation Track Structure at Micron Level of Carbon Ions

Radiation Track at 1.67 micron per pixel resolution for carbon ion with 300 MeV/n and LET 50 keV/ μ m (approximately 100x50 pixels are shown from about 3600x2700 pixel image)

Conclusions / Summary

- Current Results Promising Future
 - We developed detectors to capture carbon ion tracks (and several other ions) at micron level
 - We showed how to discriminate low LET variations
 - We are now developing 3D visualization of ion track and trajectory
 - We expect to aid in understanding biological effects and aid with (and for) model calculated assistance
 - We anticipate future heavy ion treatment capabilities to be of higher accuracy with our target data assessment

Imaging Radiation Particle Trajectories at Micron Resolution: Applications for ISS and Beyond PB Saganti^{1*} H Wang¹, M Hada¹, SM Kolluri¹, Md Rahman¹, SE Saganti¹, GM Erickson¹, N. Kallur¹, JR Rhone^{1,4}, KM Menezes^{1,6}, Y Furusawa², R Hariyama², M Seivert³, A. Rusek³, SD Holland^{1,4,5}, and FA Cucinotta^{1,7}

1 Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX, USA 2 HIMAC National Institute of Quantum and Radiological Science and Technology, Chiba, Japan 3 Brookhaven National Laboratory, Upton, NY, USA 4 NASA Johnson Space Center, Houston, TX, USA 5 Holland LLC, Houston, TX, USA 6 College of Medicine, Texas A&M University, College Station, TX, USA 7 University of Nevada Las Vegas, Las Vegas, NV, USA

Texas A&M University System (TAMUS) Chancellor's Research Initiative (CRI) @ Prairie View A&M University (PVAMU)