

LIDAL: Nuclear Discrimination

Giorgia Santi Amantini *, Luca Di Fino +, Giulia Romoli *, Giorgio Baiocco°, Alice Mentana°, Livio Narici*+

> * University of Roma Tor Vergata, Rome, Italy ° University of Pavia, Pavia, Italy + ASI, Rome, Italy

JNIVERSITÄ

DI PAVIA

KAYSER

- LIDAL Introduction
- Goal: Minimization of Astronauts' Radiation Risk
- How: Nuclear Discrimination
- Current Results
- Future Perspective

Astronauts' Radiation Risk

TOR VERGATA Dipartimento di Fisica LIDAL - Light Ion Detector for ALtea

32

31

2Y

1Y

 $8 \times 8 \ cm^2$ silicon chips 380 µm thick segmented in 32 strips strips' pitch of 2.5 mm

LIDAL Particle Discrimination

Real trajectory of a particle through the several layers of LIDAL

LIDAL Positions

LIDAL in the three positions in **Columbus** module.

Position	date	Approximate duration (months)
Z	Start 19/01/2020	
Z	End 12/02/2021	13
Y	Start 12/02/2021	
Y	End 16/09/2021	7
Х	Start 16/09/2021	
Х	End 05/06/2022	6

Now still running in Z Position

UMONS Université de Mons

Energy Release Spectrum

UMONS Université de Mons

OR VERGATA

Dipartimento di Fisica

Particle Discrimination

UMONS Université de Mons

Dipartimento di Fisica

25th WRMISS

Particle Discrimination

Use the reference spectrum of LIDAL in Z direction to calculate Landau curves on spectra in X or Y direction.

IonProb · Data X = X Ion Spectra

	lon Probability	Ion Spectra (Counts)	
< Be	15,9 %	21	
В	1.1%	1	
С	7.5 %	10	
Ν	6.4%	8	
0	16.2 %	21	
F	5.7 %	7	
Ne	19.7%	26	
Na	25.4%	33	
Mg	2.0%	3	
Energy Release of 52 Kev/µm			

UMONS Université de Mons

Spectra X direction

Spectra X direction

UMONS Université de Mons

VERGA

Dipartimento di Fisica

25th WRMISS

LIDAL Particle Abundance **X DIRECTION** Fit X Spectra / Reference Fit 70 80 80 80 0.6 0.2 0 0 4 0 4 20 10 10 0 0 0 0 4 4 00 00 10 10 10 40 40

25th WRMISS

UMONS Université de Mons

VERGA

Dipartimento di Fisica

VERGA

Dipartimento di Fisica

Abundance Y DIRECTION

lons

LIDAL Particle Abundance

lons

UMONS Université de Mons

VERGA

Dipartimento di Fisica

Different Geomagnetic Regions

The spectrum changes with the geographical areas. 40" Dividing the entire orbit into 3 regions: 20°N Low Latitude LL (equatorial regions) 0° High Latitude HL (poles regions) . 20°S **SAA** (South Atlantic Anomaly) ٠ **ALTEA Spectra Direction Z** 5000 10000 15000 20000 25000 30000 35000 40000 HL VS LL 10⁻³ **SAA** High Latitude 0.06 P Low Latitude Flux (p s⁻¹ sr⁻¹cm⁻³ keV⁻¹ μ m) Flux (#/ cm² sr s) 0.05 10 0.04 Ne 10⁻⁵ Mg 0.03 Si HL 11 0.02 10⁻⁶ Fe 0.01 10-7 0 Apr/20 Apr/21 Apr/19 Radiation flux measured in a quiet Solar Period (April 2012). 50 100 150 200 250 Energy release [keV/ μ m] Radiation survey in the International Space Station (2015)

UMONS Université de Mons

VERG

Dipartimento di Fisica

25th WRMISS

17

Apr/22

Future Perspective

• **REAL TIME DISCRIMINATION**, using specific spectra for each geomagnetic zone

ALTEA DATA 2006

HISERIAB Human Space Exploration Radiation LAB

Bethe Bloch Equation

$$-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \frac{\rho Z}{A} \frac{z^2}{\beta^2} \left[ln \left(\frac{2m_e \gamma^2 v^2 W_{max}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

25th WRMISS

Mg(2.0%)

Dipartimento di Fisica

Energy release [keV/µm]

25th WRMISS

260 270

UMONS Université de Mons

 Development of algorithm to fit LET spectrum with Landau Curves

VERG.

Dipartimento di Fisica

- Nuclear Discrimination on LIDAL data
- Single particle analysis eventually in real time
- This study is important for radiation risk assessment

THANK YOU FOR THE ATTENTION

DI PAVIA

KAYSER