Pillars of Creation

Samy El-Jaby¹, Brent J. Lewis², Leena Tomi³

¹Radiobiology and Health Branch, Canadian Nuclear Laboratories ²Royal Military College of Canada (Emeritus) ³Canadian Space Agency

A generalized approach for modelling deep space radiation exposures

21st Workshop on Monitoring for the International Space Station ESTEC, Noordwijk, Netherlands September 6 - 8th, 2016

Canadian Nuclear Laboratories

Photograph of Mars taken by the Hubble Space Telescope during opposition in 2003.

ons/5/58/Mars 23 aug 2003 hubble.in

The Goal is Mars!

Significant effort is being devoted to planning deep space exploration missions.

Mars is targeted for ~2030's!

Laboratoires Nucléaires Canadiens

First, the Moon!

To get to Mars, we must return to the Moon...

Mars is 6 months away, the Moon is less than 3 days!

The Moon is easier to plan for (no atmosphere, no magnetic field, and we've already been there)

The Moon will act as a proving ground for technologies needed to make it to Mars.

© NASA/NOAA

Image captured by NASA's Earth Polychromatic Imaging Camera (EPIC) on the DSCOVR satellite orbiting 1 million miles from Earth.

Canadian Nu Laboratories

When do we go?

The **Moon** is targeted for the 2020's. Not too far away!

Saturn V boosters lift the Apollo 11 astronauts toward the moon, July 16, 1969.

//time.com/3880305/apollo-11-photos-of-what-liftoff-looked-like,

*

Deep Space Exploration

View of Lake Ontario from the International Space Station Credit: NASA, Copyright Canadian Space Agency

6/30/14-breathtaking-photographs-of-canada-from-space.asp

Cis-lunar and Mars missions are an international effort with Canada playing a supporting role!

*

But... can we go?!?!

Canadian Space Agency astronaut Chris Hadfield making one of the first spacewalks by a Canadian during the STS-100 mission in 2001

Health effects from space radiation are a serious concern.

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens POLL

Questions to consider...

What radiation dose will astronauts get?

What radiation quality will they be exposed to?

Will the dose exceed limits?

What should the dose limits be

What are the health effects?

Shoot for the Moon!

- High energy electrons from 2.8 to $12R_E$

High energy protons from 200 km up to $\sim 60R_E$ 2.4 Earth radii ($R_E = 6371$ km)

The region between Earth and the Moon dominated by galactic cosmic radiation and solar particle events (if they occur).

> T. Dachev, B. T. Tomov, Y. N. Matviichuk, P. S. Dimitrov, S. V. Vadawale, J. N. Goswami, G. De Angelis and V. Girish, "An overview of RADOM results for earth and moon radiation enevironment on Chandrayaan-1 satellite," Advances in Space Research, vol. 48, no. 5, pp. 779-791, 2011.

The Spider Nebula

What can we expect?

Chandrayaan-1 Mission Phase

tps://www.nasa.gov/sites/default/files/dePlabnails/image/p1613a1

Galactic Cosmic Radiation

98% of GCR is made up of protons (~87 %), alpha particles (~12 %), and heavy nuclei (~1 %).

Remaining 2 % is populated by electrons and positrons.

GeV energies!!

"On August 31, 2012 a long prominence/filament of solar material that had been hovering in the Sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. Seen here from the Solar Dynamics Observatory, the flare caused an aurora on Earth on September 3."

Solar Particle Events

High energy protons (hundreds of MeV) with high flux and short time frames.

Difficult to model, difficult to predict!

Models Play a Significant Role!

Laboratories

Canadiens

-12-

Models Play a Significant Role!

Need variance reduction techniques to get reasonable statistics.

Simulations are time consuming given relatively limited resources (CPU power).

Canadian Nuclear Laboratoires Nucléaires Canadiens

More importantly, will the next SPE look like these?

If not, how will that modify dose?

Instead of transporting spectra, why not transport monoenergetic protons? Better convergence of answers, quicker solutions of future SPE events, more flexible!

General Details of the Model

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

UNRESTRICTED / ILLIMITÉ -20-

Preliminary Results: Secondary Neutrons

Preliminary Results: Secondary Photons

Preliminary Results: Secondary Protons

Preliminary Results: Secondary Alphas

Preliminary Results: Secondary Heavy lons

Preliminary Results: Secondary Spectra Oct89

<u>SOLID LINE</u> - Secondary spectra produced by weighted sum of secondary particles from MCNPX transport of monoenergetic input protons.

<u>DASH LINE</u> - Secondary spectra produced by transporting full SPE spectra at once in MCNPX and tallying secondary particles.

Preliminary Results: BFO Dose Equivalent

Organ dose equivalent to Blood Forming Organs (BFO)) calculated using ICRP-123 defined fluence-todose equivalent conversion factors (based on ICRP-60 Q(L) and NASA Q(Z,E)) calculaated for each SPE.

Only considers secondary neutrons, protons, and alphas for 10 cm aluminum sphere

	BFO Dose Equivalent (Sv)		
<u>SPE</u>	<u>Q(ICRP60)</u>	<u>Q(NASA)</u>	
Oct-89	0.046	0.021	
Sep-89	0.007	0.003	
Aug-72	0.022	0.009	
Nov-60	0.073	0.052	
Feb-56	0.117	0.081	

Results based on the weighted sum of secondary spectra produced by MCNPX transport of monoenergetic protons.

Preliminary Results: BFO Dose Eq. Aug-1972

Table 5

Dose equivalent and dose in critical body organs within an aluminum structure during the August 1972 solar event, cSv (cGy)

Organ	Space suit	Pressure vessel	Equipment room	Shelter
Skin	9350 (4830)	3560 (2120)	427 (294)	110 (76)
Lens	3830 (2400)	2140 (1420)	367 (263)	101 (71)
BFO	217 (157)	180 (130)	65 (47)	24 (17)

J.W. Wilson et al. | Radiation Measurements 30 (1999) 361-382

Space suit = 0.4 g/cm²; pressure vessel = 1 g/cm²; Equipment room = 5 g/cm²; shelter = 10 g/cm²

Previous estimate of BFO organ dose equivalent, by Wilson et al., for Aug 1972 for various thicknesses of Al (0.4 – 10 g/cm²)

MCNPX simulations estimate a ~ 0.9 (Q_{NASA}) – 2.2 cSv (Q_{ICRP60}) BFO dose compared to Wilson et al.'s extrapolated value of 1 cSv at 20 g/cm² Values are not within the same range, requires investigation.

Canad Labor

Preliminary results show promise.

Demonstrated ability to model any and future SPE spectra quickly and efficiently!

Need to improve stats for low-energies.

Can modify the code to automate a TIME-DEPENDENT SPE dose quickly efficiently!

Need to calculate dose (Sv) via fluence-to-dose conversion factors!

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Apollo 11 Lunar Module Eagle, July 20 1969,

Future (Ongoing) Work @ CNL!

Isotropic, uniform source

Monoenergetic Protons, Alphas, heavy ions Z= 1 - 28 $10^{0} - 10^{1}$ MeV in Steps of 1 MeV $10^{1} - 10^{2}$ MeV in steps of 10 MeV 10^{2} to 10^{3} in steps of 100 MeV 10^{3} to 10^{4} in steps of 1000 MeV 10^{4} to 10^{5} in steps of 10^{4} MeV

Secondary Particle Flux (n, γ , p, α , heavy ion Z = 3 -28)

Future Considerations!

Monte Carlo models typically ignore mechanical and physical properties and focus only on shielding.

Realistically, models may not capture shielding distributions necessary for proper dose assessment.

Example of a Typical Monte Carlo Model

Orion crew module

It would be better to first start off with realistic geometry and then add additional shielding as necessary to try and reduce dose.

Simulations can be repeated with new geometries and/or shielding.

http://www.nasa.gov/centers/dryden/multimedia/imagegallery/Orion/ED08-0230-362.html

Future Considerations!

Monte Carlo models typically ignore mechanical and physical properties and focus only on shielding.

Realistically, models may not capture shielding distributions necessary for proper dose assessment.

422

Example of a Typical Monte Carlo Model It would be better to first start off with realistic geometry and then add additional shielding as necessary to try and reduce dose.

Simulations can be repeated with new geometries and/or shielding.

enters/dryden/multimedia/imagegallery/Orion/ED08-0230-362.ht

We have a sense of necessary shielding:

- 20 g cm⁻² (Al) needed to protect against effects of SPEs.
- High-hydrogen content material is optimal.
- Geometry plays more significant role for SPEs vs. GCR.

Thank You!

This work is supported by AECL administered Federal S&T funding.

I would like to acknowledge the project team: Fawaz Ali, Shayne O'Brien, Sheila Kramer-Tremblay, Eugene Masala, Ankur Chaudhuri.

I'd also like to acknowledge the support of Amanda Barr, Chental Kuehl, Kristina Archer, Nick Priest, Joanne Ball, and Fred Beranek!

Thank you to the WRMISS-21 organization committee!

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

UNRESTRICTED / ILLIMITÉ -33-

Earthrise viewed by Apollo 8, Christmas Eve, Dec. 24, 1968.

Thank You!

"We came all this way to explore the Moon, and the most important thing is that we discovered the Earth."

William Alison "Bill" Anders Maj Gen, USAFR, Ret., Nuclear Engineer, & NASA Astronaut Lunar Module Pilot for Apollo 8 Mission

Earthrise viewed by Apollo 8, Christmas Eve, Dec. 24, 1968.

UNRESTRICTED / ILLIMITÉ -34-