

DEVELOPMENT OF RADIATION AND MAGNETIC FIELD MEASUREMENT PAYLOAD RadMag

21st WRMISS, September 6-8, 2016 ESTEC, Noordwijk, The Netherlands B. Zábori¹, <u>A. Hirn</u>¹, S. Deme¹, T. Pázmándi¹, Gy. Horváth², Zs. Várhegyi², I. Apáthy³

¹MTA Centre for Energy Research ²C3S Electronics Development LLC ³REMRED Technologies Ltd.

Outline

- Objectives of RadMag development
- Detector concept
- RADCUBE: a demonstration CubeSat mission
- Summary and future outlook

Credits: ESA

Credits: NASA

Primary RadMag Mission Objectives

Objective ID	Description
RadMag-O-01	To demonstrate – through successful mission operation – the future use and applicability of the RadMag instrument in strategically important fields, such as space weather research, forecast and general radiation damage monitoring for commercial use as a service.
RadMag-O-02	To demonstrate – through successful mission operation – the operability of the RadMag cosmic radiation and magnetic field measuring instrument for future CubeSat missions in order to provide global coverage of the near-real-time cosmic radiation and magnetic field data.
RadMag-O-03	To perform in-situ measurements of the cosmic radiation field environment in LEO.
RadMag-O-04	To demonstrate the technical feasibility of the magnetic field measurements as a part of the RadMag instrument package.

EV

RadMag conceptual approach

RadMag instrument setup

Compact design:

- » to be realised in 1U standard dimensions (10x10x10 cm³)
- » mass: below 1 kg
- » power consumption: below 5 W
- » modularity

RadMag radiation detector – RADTEL telescopes

Telescopes:

» to be realised with ion implanted fully depleted planar silicon detectors

- thin lightproof Ti entrance window
- ΔE and E detectors
- Al absorber(s)
- coincidence/anti-coincidence logic

Analyses (to be) performed:

» First analysis performed based on stopping power

approximations/numerical calculations

» Monte Carlo simulations just to be started

RADTEL logic

The targeted energy ranges

Parameter	Values, ranges	
Particle types	electrons, protons, ions	
Electron energy many (number of sharpeds)	0.2 MeV – 1.6 MeV (≤24, <i>TBC</i>)	
Electron energy range (number of channels)	1.6 MeV – 8 MeV (≤11, <i>TBC</i>)	
	4.0 MeV – 23 MeV (≤19, <i>TBC</i>)	
Proton energy range (number of channels)	23 MeV – 300 MeV (≤28, <i>TBC</i>)	
	>100 MeV – 10 GeV (4-5) ¹⁾	
He ion energy range(number of channels)	100 MeV/n – 10 GeV/n (4-5) ¹⁾	
C&N&O ion energy range(number of channels)	100 MeV/n – 10 GeV/n (4-5) ¹⁾	
Fe ion energy range(number of channels)	100 MeV/n – 10 GeV/n (4-5) ¹⁾	

RADTEL logic

RadMag radiation detector – dose rate measurements

EURORAD 7mm² Si diodes for high flux measurements (pulse and current measurement mode)

RadMag Magnetometer

Three-axis fluxgate magnetometer (one possible solution: Spacemag-Lite)

RadMag Magnetometer

Noise from platform (dipole approximation):

Distance from the centre of the dipole (cm)	Magnetic noise (nT) for different source magnetic moments			
	20 mA∙m²	40 mA∙m²	60 mA∙m²	80 mA∙m²
5	16,000	32,000	48,000	64,000
10	2,000	4,000	6,000	8,000
30	74	148	222	296
100	2	4	6	8
200	0.25	0.5	0.75	1

→ Sensor on boom + internal reference sensor ?

RadMag Magnetometer

RadMag	magnetom	eter goals

Measurement levels	Level 1 in nominal operation mode	Level 2 in high resolution mode
Scientific goals	 overall mapping of the geomagnetic field to support radiation data analysis. data contribution for attitude determination. 	 geomagnetic field region localization to support radiation data analysis (SAA, FACs – auroral oval); inputs for geomagnetic field model validations/comparison.
Range	±60000 nT	±60000 nT
Accuracy	1000-5000 nT	1-10 nT
Sampling rate	0.05-0.5 Hz	0.5-10 Hz

RadMag Technical Details – Budgets

Technical constraints	Preliminary limits	Margin	
Volume	Lenght ≤ 14 cm (Cross-section 10×10 cm²)	With 20% included	
Mass	≤ 1.1 kg	With 20% included	
Power consumption	≤ 5.5 W	With 20% included	
Provided data rate	≤ 170 kByte/orbit	With 20% included	
Operational temperature range	Operational: [-40; +40] °C Non-operational: [-40; +60] °C	N/A	

Category	Design maturity	Margins
А	Existing hardware	±5%
В	Design based on existing hardware with minor modifications	±10%
С	Detailed Design	±15%
D	Preliminary Design	±20%

RadMag Science Operation and Data Centre

RadMag Science Operation and Data Centre

RADCUBE: demonstration CubeSat mission for the RadMag instrument

19

C3S

3U/6U CubeSat Platform by C3S LLC

Key features

- » Single-point failure tolerant
- » Double redundancy in all subsystems
- » High reliability and availability
- » 3 year design lifetime in LEO

Planned first IOD mission: 2018

Technologies	Provider	Availability	ESA support
STRU	C3S	TRL 7	\checkmark
OBC	C3S	TRL 7	\checkmark
EPS	C3S	TRL 3	
COM-UHF TX/RX	C3S	TRL 7	\checkmark
COM-S TX	C3S	TRL 3	
ADCS	3 rd party		
GNS RX	3 rd party		
IPC	C3S / 3 rd party		
Payload(s)	C3S / 3 rd party		

C3S

Custom solution for Payload provider

3U/6U CubeSat Platform by C3S LLC

Future space weather services using fleet of CubeSats

Fleet of CubeSats and Ground Stations

Space radiation environment information system

Space weather/ radiation damage related database

Space weather/ radiation damage forecast services

Users:

RADCUBE – GSTP 6.3 IOD CUBESAT MISSION

Phase A/B1 is being realised under ESA contract No. 4000117620/16/NL/LF/as

Thank you for your attention

www.radcube.hu

