ESTIMATION OF EXPOSURE LEVELS FOR CONSEQUENCES OF SOLAR PARTICLE EVENTS

Myung-Hee Y. Kim

KBRwyle Science, Technology and Engineering Group, Houston, TX 77058

and

Steve R. Blattnig NASA Langley Research Center, Hampton, VA 23681

21st WRMISS, ESTEC, Noordwijk, The Netherlands, September 6-8, 2016

INTRODUCTION

- > Exposure to intense solar particle events (SPEs):
 - Possible acute radiation risk during interplanetary transfer and EVAs on the lunar and Martian surfaces
 - Posing increased cancer risk/degenerative disease from multiple exposures to large SPEs with high energies
- > NASA's operational strategies for protection:
 - Real-time estimation of exposure levels of SPEs
 - Applying proper shielding solutions in a timely manner
 - Improved forecasting capability
 - Developing early-warning systems
- Problem: Making a realistic temporal estimation in a timely manner has not been readily available because the exposure analysis relies on required components
- Objective: To estimate realistic temporal exposures using predictor fluences

APPROACH

- Band fit parameters of 59 ground-level enhanced events (GLEs) observed since 1956: as an accurate functional representation of complete energy spectrum of major SPEs
- NASA BRYNTRN code system: for transport properties with detailed shielding and body geometry models
- Response quantities: BFO dose and NASA effective dose
- Solar energetic proton measurements below 500 MeV from NASA's IMP-8 GME experiment from 1973 to 2001: primary database of Φ_{200} and updated database of Φ_{30} , Φ_{60} , Φ_{100}
- ▶ Prediction models for BFO dose and NASA effective dose: as a function of the predictor fluence of Φ_{30} , Φ_{60} , Φ_{100} , or Φ_{200}
- Unconditional probability of a BFO dose exceeding the limit (BFO dose risk): by taking into account the distribution of BFO dose as a function of the predictor

BAND FUNCTION FIT IN RIGIDITY

- Based on Band et al., Astrophysical Journal, 413, 281-292, 1993 — A double power law in proton rigidity smoothly joins satellite & neutron-monitor spectra from ~10 MeV to ~10 GeV
- Functional forms:

 $\Phi(>R) = J_0 R^{-\gamma_1} e^{-R/R_0} \qquad \text{for } R \le (\gamma_2 - \gamma_1) R_0$ $\Phi(>R) = J_0 R^{-\gamma_2} \left\{ \left[(\gamma_2 - \gamma_1) R_0 \right]^{(\gamma_2 - \gamma_1)} e^{(\gamma_1 - \gamma_2)} \right\} \qquad \text{for } R \ge (\gamma_2 - \gamma_1) R_0$

GLE-specific 4 Parameters: J_0 (p/cm²), γ_1 , γ_2 , R_0 (GV)

- Catalogues of proton spectra for 59 GLEs observed since 1956:
 - Allan Tylka and William Dietrich, "Proton Spectra in Ground-Level Enhanced (GLE) Solar Particle Events," 37th Committee on Space Research (COSPAR) Scientific Assembly, Session D23-0003-08, Montreal, Canada, 2008.
 - Tylka and Dietrich, the 31st International Cosmic Ray Conference, Lodz, Poland, July 7-15, 2009.

WORLD-WIDE NEUTRON MONITOR (NM) NETWORK MAP

Source: Neutron Monitor Program, Bartol Research Institute, U. of Delaware

WORLD-WIDE NEUTRON MONITOR (NM)

Converting NM Data to Absolutely Normalized Fluence Measurements:

- Each stations at different geographical position → Characterization of the flux of charged particles arriving at the magnetosphere (arrival direction and rigidity/energy)
- The combination of NMs with the Earth's atmosphere and magnetosphere →
 Be a unique instrument with directional and energy resolution
- Advantage of the use of all stations as a unified multidirectional detector →
 Substantially higher (< 0.1% for hourly data) accuracy than for a single instrument

New Technique (Tylka and Dietrich, 2009)¹ for Analyzing GLE NM Data:

- Pressure-corrected data from the world-wide NM network
- Yield functions (Clem and Dorman, 2000)²
- Cutoff code "RcUT3" (Smart et al., 2006)³
- Altitude correction (McCracken, 1962)⁴
- \rightarrow Absolute Normalization and Spectral Index

 ¹Tylka AJ and Dietrich WF, Proceedings of the 31st International Cosmic Ray Conference, Lodz, Poland, July 7-15, 2009.
 ²Clem JM and Dorman LI, *Space Sci. Rev.*, 93, pp. 335-359, 2000.

³Smart DF, et al., *ASR*, 37, pp. 1206-1217, 2006.

⁴McCracken KG, *JGR*, 67, pp. 423-458, 1962.

BAND FUNCTION FIT IN RIGIDITY - Example -

- Fitting of two data sets for 12 Nov 1960 GLE:
 - satellite data
 - neutron monitor data at the neutron monitor ground stations each having a different geomagnetic rigidity cutoff
- Fitting parameters in light blue: Tylka AJ and Dietrich WF, 31st ICRC, 2009

12 Nov 60 GLE

1 GV proton ~ 430 MeV

SOURCE DATA OF IMP-8 GME EXPERIMENT 1973 - 2001

IMP-8 GME for 28 SPEs					Corresponding 33 GLEs		
Event Start	Event End	Solar	Event	CMF	Official	$\Phi_{200} (p/cm^2)$	
Date / Time	Date / Time	Cycle	Duration (days)	index	GLE No.	GME data	Band Fit
4/30/76 17:15	5/3/76 23:45	20Min	3.29	36	27	5.37x10 ⁵	7.01x10 ⁵
9/19/77 9:15	9/24/77 4:45	21Max	4.83	47	28	4.81×10^{5}	6.75x10 ⁵
9/24/77 5:15	10/6/77 0:15	21Max	11.81	48	29	8.46x10 ⁵	1.38×10^{6}
11/22/77 8:15	12/3/77 0:15	21Max	10.69	52	30	9.73x10 ⁵	2.01×10^{6}
5/7/78 0:45	5/21/78 12:15	21Max	14.50	66	31	5.08×10^5	4.59×10^{5}
9/23/78 6:15	10/1/78 0:15	21Max	7.77	75	32	No GME data	2.58×10^{6}
4/24/81 11:45	5/28/81 10:15	21Max	33.96	141	35	4.84×10^{5}	2.75x10 ⁵
10/8/81 0:15	10/27/81 0:15	21Max	19.02	153	36	1.26×10^{6}	1.39×10^{6}
11/21/82 6:15	11/26/82 1:45	21Max	4.83	180	37a	1.03x10 ⁴	4 61-105
11/26/82 2:15	12/7/82 17:45	21Max	11.67	181	37b	2.70×10^5	4.01X10 ⁵
12/7/82 18:15	12/13/82 13:45	21Max	5.83	182	38	6.35x10 ⁵	1.28×10^{6}
2/16/84 0:15	3/5/84 0:15	21Max	18.02	200	39	1.20×10^{6}	6.94x10 ⁵
7/25/89 3:15	7/28/89 10:15	22Max	3.31	266	40	1.14×10^{5}	4.77×10^{5}
8/12/89 10:45	9/8/89 20:15	22Max	27.42	268	41	9.57x10 ⁶	5.13x10 ⁶
9/29/89 10:15	10/19/89 0:15	22Max	19.60	271	42	4.38×10^{7}	3.11×10^{7}
10/19/89 8:15	11/14/89 0:15	22Max	25.69	272	[43+44+45]	9.91x10 ⁷	9.26x10 ^{7\$}
					43	5.65x10 ⁷	5.51×10^{7}
					44	2.12×10^{7}	1.59 x10 ⁷
					45	2.15×10^{7}	$2.16 \text{ x} 10^7$
11/15/89 4:15	11/25/89 0:15	22Max	9.85	273	46	1.84×10^{5}	3.15x10 ⁵

32: Φ_{200} not observed by IMP-8 GME

^{\$}Sum of Band fit for GLEs 43, 44, and 45.

37a+37b:Sum of 2 separate SPEs by GME 180 and 181 for GLE 37 observation.

SOURCE DATA OF IMP-8 GME EXPERIMENT 1973 - 2001

IMP-8 GME for 28 SPEs					Corresponding 33 GLEs		
			Event		$\Phi_{200} (p/cm^2)$		
Event Start	Event End	Solar	Durati	GME	Official		
Date / Time	Date / Time	Cycle	on	index	GLE No.	GME data	Band Fit
			(days)				
5/21/90 22:45	6/9/90 10:15	22Max	18.50	286	[47+48+49+50]	5.83x10 ⁶	6.41x10 ^{6%}
					47	8.88x10 ⁵	1.43×10^{6}
					48	1.45×10^{6}	2.35×10^{6}
					49	1.01×10^{6}	1.60×10^{6}
					50	2.48×10^{6}	1.03×10^{6}
5/29/91 14:15	6/26/91 15:45	22Max	28.08	306	[51+52]	9.05x10 ⁶	8.29x10 ⁶
					51	5.10×10^{6}	3.99×10^{6}
					52	3.95×10^{6}	4.30×10^{6}
6/24/92 0:15	7/2/92 17:15	22Max	8.73	334	53	2.85x10 ⁵	5.37x10 ⁵
10/30/92 16:15	11/12/92 0:15	22Max	12.35	337	54	6.49x10 ⁶	2.77×10^{6}
11/3/97 8:15	11/13/97 19:15	23Max	10.48	377	55	2.16×10^{6}	3.62×10^{6}
5/2/98 13:15	5/6/98 4:15	23Max	3.65	384	56	3.39x10 ⁵	5.97x10 ⁵
5/6/98 4:45	5/8/98 12:15	23Max	2.33	385	57	7.45×10^4	1.57×10^{5}
8/19/98 8:15	9/4/98 0:15	23Max	15.69	395	58	3.61x10 ⁵	3.86x10 ⁵
7/9/00 0:15	8/10/00 0:15	23Max	32.02	445	59	2.77×10^{7}	3.39x10 ⁷
4/9/01 12:45	4/15/01 12:15	23Max	6.00	465	60	1.27x10 ^{5*}	8.09x10 ⁶
4/15/01 12:45	4/26/01 8:15	23Max	10.83	466	61	4.22x10 ^{6**}	1.24×10^{6}
				28 SPEs	33 GLEs	32 GME data	33 Band fit

[%]Sum of Band fit for GLEs 47, 48, 49, and 50.[&]Sum of Band fit for GLEs 51 and 52.

*GLE 60, Φ_{200} =3.51x10⁶ (data taken from GMEs 465 and 466 until April 17, 2001, 23:45). **GLE 61, Φ_{200} =8.36x10⁵ (data taken from GME 466 starting April 18, 2001, 0:15).

SOURCE DATA OF IMP-8 GME EXPERIMENT 1973 - 2001

- A long-time series database of 479 SPEs for optimal solar proton fluxes of background interplanetary particles subtracted
- Φ_{200} GME data for 32 official GLEs comparable to Band fit
 - ➢ Good correlation (R=0.955)
 - \blacktriangleright Dispersion of data with ±1 σ error
- $\Phi_{
 m 200}$ database compiled with 32 GME data
- Φ_{30,60,100} databases updated with GME data
 → More observables of historical SPEs

- The more available historical data, the better estimation of the distribution of historical predictor (Φ_E)
 - ▶ Prediction model improved with better correlation and increased accuracy of linear approximation by taking into account of variability of spectral shape of predictor (Φ_E) .
 - Estimation of unconditional probability improved for "BFO dose risk" exceeding the NASA limit

database of $\Phi_{\scriptscriptstyle E}$

GLEs		$\Phi_{ m 30}$	Φ_{60}	$\Phi_{ t 100}$	$\Phi_{ m 200}$
N	59	54	48	51	32
Datas	source	a-f	a-f	a-f	f

^aKing, J. H., Solar proton fluences for 1977-1983 space missions, J. Spacecraft, **11**, No. 6, pp. 401-408, June 1974.

^bGoswami JN, McGuire RE, Reedy RC, Lal D, Jha R., J Geophys Res **93**:7195–7205; 1988.

^cShea, M. and Smart, D., Solar Physics, **127**, pp. 297-320, 1990.

^dFeynman, Armstrong, Dao-Gibner, and Silverman, J. Spacecraft, **27**, No. 4, pp. 403-410, July-August, 1990.

^eGOES SEM archive: <u>http://satdat.ngdc.noaa.gov/sem/goes/data/</u>

^fInterplanetary Monitoring Platform (IMP-8) Goddard Medium Energy (GME) Experiment

DISTRIBUTION OF BFO $\text{DOSE}_{\text{MALE}}(\Phi_{30})$, N=54

DISTRIBUTION OF BFO $\text{DOSE}_{\text{MALE}}(\Phi_{200}),$ N=32

REGRESSION MODELS

- Regression model improved by higher proton energy threshold (Φ_{30} to Φ_{60} to Φ_{100} to Φ_{200} regardless of size, N: As *E* increased,

 - ✤ σ decreased → Increased accuracy of linear approximation (taking into account the probability distribution of energy spectrum Φ_{0<E<∞})
- Overall prediction improved as the energy threshold increases:
 BFO dose determined more by protons with higher energies than lower energies
- Exposure to extreme SPEs (GLE or sub-GLE):

BFO dose determined by far the most weight by protons above 200 MeV

R^2 for BFO dose with 20 g/cm 2 Shielding

σ for BFO dose with 20 g/cm² shielding

RISK ASSESSMENT FOR FUTURE SPEs

- Not feasible to model the probability distribution of complete energy spectra Φ(E) (0 < E < ∞) for future SPEs
- Practical alternate to accurate assessment of radiation risk from SPEs: Risk approximation based on measurements at high energies of protons having the most weight in the dose calculation for deep-seated organs (Φ_{30} , Φ_{60} , Φ_{100} , Φ_{200}) for an unspecified future SPE with spectral shape variability of historical SPEs

$$\log_{10} R(\Phi_E) = \beta_{0E} + \beta_{1E} \log_{10} \Phi_E + u_E$$

where $u_F = N(0, \sigma^2)$

normally distributed random error term with zero mean and variance σ^2

PARTIAL INFORMATION OF $\Phi_{\rm E}$ and random variation of the rest energy spectrum of future spe

Normally distributed error term around the BFO dose approximation based on the predictor (Φ_E), attributable to variability of spectra of SPEs:

 $u_E \sim N(0, \sigma_{\!E}^{\ 2})$

- Error function is related to the CDF: $\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right]$
- Evaluation of error function at $z = \frac{x}{\sigma\sqrt{2}}$ erf(z) = $\frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$

 \rightarrow the probability having a distance less than the number of standard deviation , x

Unconditional probability of "BFO dose risk":

$$P(BFO \ dose > B_0) = \frac{1.0 - \text{erf}(z)}{2}$$

EVA

 5 g/cm^2

10 g/cm²

20 g/cm²

EVALUATION OF EXPOSURE LEVELS USING IMP-8 GME DATA

P(> B_0) OF 33 GLEs BASED ON IMP-8 GME Φ_{100}

- Most GLEs to small crew doses with near-zero probability of exceeding the NASA 30-d limit
- SPEs concerned to fulfill ALARA and career limit
- 5 outstanding GLEs would lead to significant health risks without proper shielding
 1080 Sep 20

1989-Sep-29

- 1989-Oct-19
- 1989-Oct-22
- 1989-Oct-24
- 2000-Jul-14
- Once per 10 years occurrence probability for the fluence to the magnitude of these individual GLE assessed by cumulative occurrence probability density function for space era (Usoskin *et al.* 2012; Kovaltsov *et al.* 2014)

NASA EFFECTIVE DOSE FOR MALE MEDIAN WITH 90% TOLERANCE LIMITS

SOLAR PROTON FLUENCE AT 30-MIN RESOLUTION OF IMP-8 GME DATA FROM THE ONSET OF 4/30/1976 17:15

ACCUMULATED SOLAR PROTON FLUENCE IMP-8 GME DATA FROM THE ONSET OF 4/30/1976 17:15

ACCUMULATED BFO DOSE FROM THE ONSET OF 4/30/1976 17:15 MEDIAN WITH 90% TOLERANCE LIMITS FOR MALE DURING EVA

hr

BFO DOSE RATE FOR MALE IMP-8 GME DATA 10/19/1989 10:15 – 11/14/1989 0:15

ACCUMULATED SOLAR PROTON FLUENCE IMP-8 GME DATA 10/19/1989 10:15 – 11/14/1989 0:15

P(> B₀) BASED ON Φ_{100} IMP-8 GME DATA FOR 26 DAYS FROM THE ONSET OF OCT 19, 1989 10:15

hr