

The energetic Solar Particle Events (SPEs) measured by ALTEA in the ISS during the ALTEA-shield experiment (2011-2012): first 1.5 years long study of SPE radiation inside a space habitat.

L. Narici, L. Di Fino, A. Rizzo

Department of Physics, University of Rome Tor Vergata, Rome, Italy

SPE

- Reasons
- ALTEA

characteristics configuration locations measurement time

- Typical measurements and data selections
- SPEs flux measurements
- Examples of different SPEs
- Simple model to select and quantify the SPE
- Quasi-linear relationship with GOES
- the three SPE with significant dose response

LIDAL

- Rationale
- Improvements over ALTEA
- Hardware and Logic
- Conclusions

- Forecasting SPE is a must, however:
 - SPEs not only are sporadic, but also their features may significantly differ event by event
 - Forecasting for deep space exploration IS DIFFERENT from forecasting for SEU (think about false negatives)
- Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is a first priority issue
- In principle this can be simulated (several previous talks): from a set of realistic SPE spectra and a transport simulation inside the spacecraft/base we can study the "inside" radiation environment.
- This brings in two issues: the definition (and 'usefulness') of 'a' realistic spectrum and the understanding of the mass distribution (and its changes) to produce a meaningful transport simulation.
- Measurements of SPE effects with active devices inside the ISS can also be used for this purpose: they are less flexible, limited by detector performances and positions, but for certain they produce valid information for the specific SPEs measured, relative to the specific detector location in the ISS.
- Also, active detectors can select data from specific geo-magnetic regions along the orbits, mimicking deep space radiation

In principle the measurement should be performed with a detector able to follow in real time all the radiation dynamics, including ions (Z = 1 to 26) and neutrons (produced by the primary ions), at all energies.

Furthermore the detector should be placed in a position with known shielding, i.e. where we have a quantitative knowledge of the mass distribution around.

The two requirements above are never entirely fulfilled:

- Detectors have windows of acceptance (in particle kinds, kinetic energy, rate, energy transferred, etc.)
- The best we usually have is a *qualitative* knowledge of the mass distribution around and often even less information about daily changes^{1,2,3}.

What ALTEA can offer

ALTEA (developed by ASI) is a detector system with tracing and spectrometric capability. From the point of view of this topic it offers:

- Real time operation
- Ability to select any specific geo-magnetic region
- Telescopes on the 3 directions (X Y Z), with single ion tracing capability
- 3.5 years of data, from 8/2006 to 9/2012 (not continuous)¹
- Statistical nuclear discrimination for Z>3

But as mentioned before

• Reduced Z, Ek coverage

And during the measurements there has been

• Approximate knowledge of shielding (typical for ISS)

1 In this talk only the period 2010 – 2012 will be considered (ALTEA – shield, ESA sponsored program)

ALTEA characteristics

SDU: Silicon Detector Unit

With the used parameters:

3 keV/μm < **LET(Si)** < 800 keV/μm

ALTEA while set in position in the USLab

ALTEA acceptance

ALTEA acceptance 2

ALTEA location

Fig. 1. The four measurement sites (P1–P4) in the USLab and the fifth one (P5) in Columbus. The three ISS orthogonal directions are also shown (see, for example, Di Fino et al. 2011).

Narici et al. J. Space Wea. and Space Clim. 5, A37 (2015)

ALTEA configurations

Fig. 3. ALTEA in the four USLab positions (see Table 1). Top left: Position P1 (in this site the rack was temporarily missing and the Y-directed detectors were facing the USLab hull); Top right: P2 on the overhead with the Z-directed detectors inserted in an empty drawer; Bottom left: P3 on the port side with the Y-directed detectors inserted in an empty drawer; Bottom right: P4 on the overhead. X, Y, Z: ISS coordinate system. Photo courtesy of NASA.

Table 1. Running days in the four ALTEA-shield/survey positions. The last line corresponds to the "shield" section of the experiment. The total duration might be less than the total number of days between start and end because of shut-off periods.

Year	Date	Total duration (days)	Position name	Position
2010	09/20-10/04	14	P1	Lab1S1
2010	10/15-11/30	40	P2	Lab1O2
2011	04/24-07/22	90	P3	Lab1P4
2011/	07/23/2011-	263	P4	Lab1S6
2012	06/07/2012			
2012	06/08-09/30	114	P5	Columbus ER 3

iversita

Tor Ve

Fig. 4. Radiation flux measured by one SDU (SDU2, Z direction) in a quiet Solar Period (April 19–22, 2012). Top: complete data set. Bottom: Same data set, filtering out the passes through the SAA.

ALTEA survey results

Fig. 5. Top: Flux measured by ALTEA in the three directions both in the whole orbit (empty symbols) and in the high latitude passes (HL, full symbols). The five most evident Solar Particle Events (SPEs) are indicated with an arrow. The dotted line serves as a guide for the eyes to follow the mean steady decrease of the flux linked to the solar cycle modulation. Bottom: Altitude of the ISS from the ancillary data acquired concurrently with the ALTEA measurements (above in red); solar cycle as described by the MgII index (middle, in blue); flux of the energetic (>100 MeV) protons, as measured by GOES (lowest, in green); The P1–P5 segments indicate the periods that the detector system ALTEA spent in the five different positions during the experiments ALTEA-shield/survey (P1–P4) and ALTEA-shield/shield (P5).

Narici et al. J. Space Wea. and Space Clim. 5, A37 (2015)

		Flux $[\#/(cm^2 sr s)]$									
	Start	Р	Р	ALTEA	ISS	NOA	CME	Flare Max.	Flare	Flare	Region
		> 10	>100		mag				Importan	Location	(SW0)
		MeV	MeV		low				ce		
					cut						
1	May 27				Y	N					
2	Jun 07/0820 [1]	72	4.53	0.01462	Y	Y	SW/08 1750	Jun 07/0803	M2/2N	S21W64	1226
3	Aug 04/0635	96	1.8	0.003992	Y	Y	NW/060515	Aug 04/0412	M9/2B	N15W49	1261
4	Aug 09/0845	26	2.54	0.006074	Y	Y	NW/091710	Aug 09/0805	X6/2B	N17W83	1263
5	Sep 06		0.41		Y	N					
6	Sep 23/2255	35	0.211	[2]	Y	Y	NE/27 0430	Sep 22/1101	X1/2N	N11E74	1302
7	Nov 04		0.172		N	N					
8	Nov 26/1125	80		[3]	Ν	Y	NW/280145	Nov 26/0710	N/A	N08W49	1353
9	Mar 07/0510	6530	69.3	0.09076	Y	Y	NE/07 0036	Mar 07/0024	X5/3B	N17E15	1429
10	Mar 13/1810	469	1.89	0.004481	Y	Y	NW/13 1736	Mar 13/1741	M7/	N18W62	1429
11	May 17/0210	255	20.4	0.009376	Ν	Y	NW/170148	May 17/0147	M5/1F	N12W89	1476
12	May 27/0535	14			N	Y	/27 2112	N/A	N/A	N/A	1482
13	Jun 16/1955	14			Y	Y	SE/14 1430	Jun 14/1435	M1/1N	S17E14	1504
14	Jul 07/0400 [4]	25	0.706	0.004124	Y	Y	SW/06 2312	Jul 06/2308	X1/	S18W50	1515
15	Jul 12/1835	96	0.251	0.001433	Y	Y	SW/12 1649	Jul 12/1710	X1/2B	S16W09	1520
16	Jul 17/1715 [5]	136	0.731		Ν	Y	SW/17 1348	Jul 17/1715	M1/	S17W75	1520
17	Sep 01/1335	59			Y	Y	SE/31 2012	Aug 31/2043	C8/2F	S06E20	
18	Sep 28/0300	28	0.159		Y	Y	NW/280018	Sep 27/2357	C3/1F	N08W41	1577

(1) GOES100 & ALTEA sees a start on the day before (June 6).

(2) Only Forbush, Maybe there is also a small signal for ALTEA

(3) A very small signal for ALTEA

(4) Two events, on the 7th and on the 9th. ALTEA sees well the 9th one (indicated). The 7th has a maximum at high magnetic cut, and ALTEA barely sees it.

(5) On the 17th a small P >100 at high magnetic cut, on the 19 a large burst (indicated), however ALTEA was off.

iversità

Tor Ven

SPEs in 2010 – 2012: example 1

iversità

Tor Verg

iversità

Tor Ver

SPE 16: July 17th, 2012

iversità

Correspond to

iversità

This L dynamics

iversita

A 'value' for the SPE: the data reduction model

A 'value' for the SPE: the data reduction model

iversità

Tor Ver

SPE 4: Aug 9, 2011

ALTEA vs GOES

ALTEA vs GOES

Only Position 4

The two SPE (beside March 2012) with a non negligible dose behavior

iversita

Tor Verg

Dose and Dose Equivalent behavior

Di Fino et al. J. Space Wea. and Space Clim. 4 A19 (2014)

Forbush effect

- Influence of SPEs in the ISS shows clear and understandable general features such as the - monotonic - ≈ linear dependence with GOES (p>100 MeV)
- Influence of SPEs in the ISS shows to be understood detailed features
 - single multi orbit responses with similar SPE (from GOES standpoint)
 - 'saturation' during March 7th SPE (*first analysis: no detector rate problem*)

important parameters may have still to be determined

- Directions play important roles
- Simple modeling to 'select out' the GCR behavior is a good tool to search for impulsive events from active detectors data
- Forbush effects, in the reduced ALTEA proton acceptance, may balance the impulsive dose
- Several times Forbush are visible even without impulsive part
- Importance of shielding and its dynamic

Light Ion Detector for ALTEA: LIDAL

Rationale:

- 1) expand ALTEA energy acceptance window to include all H and He
- 2) provide if possible a direct measure of ions kinetic energy through a time of flight

The LIDAL project:

Build a system based on fast scintillator detectors to be used as ToF and as trigger for ALTEA

- Two Detector Units (DUs) to be positioned at the end of a Silicon Telescope (ST: three SDUs).
- Each DU made of thin plastic scintillators (full ST field of view covered)
- Scintillators will be segmented in the two orthogonal directions (provide first position/tracking)
- Time resolution aimed to be better then 100 ps

LIDAL improvements

iversità

Tor Ve

Test on proton beam

The statistical identification and the LIDAL improvement

The independent measurements of the ion velocity gives information to resolve ions in A and B

Figure 5A portion of the energy loss spectrum, simulated over the whole Silicon length (≈ 2 mm), fitted with a sum of Landau curves. Without even considering Z ≤ 4 tails in region A can be found Boron or Carbon ions, while, for example, in B, Carbon, Nitrogen or Oxygen ions. The relative population amount can be used to provide a probability for each ion (see Di Fino et al 2012).

LIDAL hardware

+ 2 sets of scintillators On the two sides of the SDU stack

> LIDAL are two sets of scintillators to be coupled to ALTEA to provide sensitivity to protons and Time of Flight capability

Flight hardware:

- Two detector units (approx. 240 mm x 120 mm x 60 TBC) + one control unit.
- Each detector unit includes segmented scintillators coupled to photomultipliers (compact and low powered).
- The two units will be mounted at the two sides of 3 of the ALTEA Silicon Detector Unit(s).
- The TOF system high performances guarantees a time resolution $\approx 10^2$ ps.

LIDAL logic

LIDAL logic

LIDAL will provide the sensitivity to most (\approx 100%) of the relevant ions

Time of Flight will allow for a direct and independent measurement of velocity and therefore will strongly improve nuclear identification

LIDAL contract has been just signed.

Conclusion

Thank you for your attention!