

Update on Medipix Developments

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

Lawrence Pinsky Physics Department University of Houston

The Principal Acknowlegments...

L. S. Pinsky¹, A. Empl¹, L. Tlustos¹, D. Turecek¹, M. Kroupa^{2,3},
T. Campbell-Ricketts¹, S.P. George¹, R. Rios^{2,3}, N. N. Stoffle^{2,3},
E. J. Semones², C. Amberboy^{2,3}, A. A. Bahadori^{2,7}, Dan Fry²,
Cary Zeitlin^{2,3}, S. Pospíšil⁵, J. Jakubek⁵, Z. Vykydal⁵,
H. Kitamura⁶, & S. Kodaira⁶

AND the Medipix2, Medipix3 and Medipix4 Collaborations, As Well As

The NASA HERA & BIRD Engineering and Management Teams

¹ Physics Department, University of Houston, Houston, TX, USA <pinsky@uh.edu>

- ² NASA Johnson Space Center, Houston, TX, USA
- ³ Lockheed Martin , Houston, TX, USA
- ⁴ University of Houston-Downtown, Houston, TX, USA
- ⁵ Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic

⁶ National Institute for Radiological Sciences, Inage, Japan

Kansas State University 20^m WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

Hybrid Pixel Detectors

Detector and electronics readout are optimized separately

Learning. Leading.

Bumps on BOTH the Chip and Sensor

MCNC-RDI x200

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

200um

Hybrid Pixel Detector - Cross Section

Radiation Environment Monitor ("REM") NASA ISS Flight Hardware!

Based on the First-Generation "USB-Lite" Interfaces from IEAP

Sat Mar 01 22:46:47.355727 2014 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 18.7994 [uGy/min], Dose equivalent = 364.4604 [uSv/min], Occupancy = 3590

NASA—ISS (Univ. of Houston + IEAP—CTU Prague)

- A total of 7 separate Timepix devices (Radiation Environment Monitors—REM) have been placed inside the ISS (at ~425 Km 51.6° orbit) since Aug. 2012...
- 2 are currently in the BEAM facility being compared with simultaneous inside the ISS measurements.
- (Two have been returned for evaluation, but as yet no Timepix chips have failed in space... Failures due to support electronics)

Medipix Devices in Space On Orion (EFT-1), Dec. 2014

- BIRD (Battery-operated Independent Radiation Detector) worked exceedingly well as already described earlier in this meeting...
- Based on Two independent Timepix-based devices...

BIRD with the cover off...

BIRD @ NASA Space Rad. Lab @ Brookhaven Nat. Lab in NY

9

Medipix Devices in Space Already and Very Soon...

ESA—Proba-V (IEAP—CTU Prague)

 1 Timepix device (SATRAM) in Polar orbit satellite at 820 Km with minimal shielding since May 2013...

Medipix Devices in Space Already and Very Soon...

Velocity

UK—TechDemoSat

5 Timepix devices (LUCID) in one detector head unit with 0.5 mm AI shielding to be launched into a Polar orbit at ~620 Km July 8, 2014

~4 Years Onboard ISS

REM Absorbed Dose Rate Data (µG/min)

REM Orbital Dose Rate Map (uGy/min) D03-W0094 (S/N 1007) GMT 2012/320 through GMT 2013/045

interpData

MIPs As A Function of Cutoff

Inner SAA LET Spectrum D03-W0094

Inner SAA LET Spectrum J02-W0156

Inner SAA LET Spectrum G03-W0094

D03-W0094 GCR LET Spectra by Rigidity

J02-W0156 GCR LET Spectra by Rigidity

G03-W0094 GCR LET Spectra by Rigidity

Parallel Pairs of Tracks Downward Secondary Fragments?

Frame for detector SN1009 (2016-07-26 06:03:05)

UNIVERSITY OF HOUSTON

Note that this occurred during an SAA Pass

Learning. Leading.

J02-W0156 GCR LET Spectra by Rigidity

20th WRMISS-Medipix in Space

Pinsky - Sept. 10 2015 - Cologne

X (Column number)

Y (Row number)

Frame for detector SN5001 (2014-10-08 22:45:49)

The Medipix Collaborations General Goal: to Evolve the Hybrid Pixel Detector Technologies for Use in Other Areas (e.g. Medical Imaging)

Medipix(1) Collaboration

- Formed at CERN in ~1995 with 5 institutions
- 64 x64 pixel x-ray counting chip

Medipix2 Collaboration

- Formed in ~2000 (eventually with 17 institutions)
- Two chips produced: MXR (2003) <u>Timepix</u> (2006)
- Both chips 256 x 256, 55 μm pixels = 2 cm².
- Frame-based readout—<u>Timepix</u> (4 modes incl. TOT or TOA).
- <u>Timepix2</u> in final design process (2015-2016).
- Medipix3 Collaboration
 - Formed in 2008 (Currently 22 institutions) 256 x 256, 55 μm
 - Medipix3, Medipix3.1, Medipix3RX (Charge summing chips)
 - <u>Timepix3</u> (2013) Data-driven Readout-simultaneous TOT & 1.6 ns TOA.

Timepix (2006)

- ...Has been around since 2006 (250 μm CMOS technology)
- Well characterized, including a few issues with work-arounds...
- 256 x 256 55 μm pixels either in 14 bit pseudo-random TOT mode or in the TOA mode with 10 ns resolution pixel-by-pixel.
- Timepix2 (In Final Design Process)
 - To be "plug-n-play" control compatible with the Timepix.
 - Functionally changed significantly (new technology 135 μm CMOS).
 - Zero-suppression, BOTH TOT and TOA simultaneously measured, fungible output counter, new front-end to accommodate higher inputs, and other known Timepix issues cleaned up...

Timepix3 (2013)

- Data-Driven readout (No dead-time up to 81 MHz pixel hits)
- Both TOT and TOA (1.6 ns) and new Front-end electronics
- Still in the process of being characterized (higher power consumption than the Timepix2...

Timepix3 Proton Flux "Olympics"

- A proton flux test of the Timepix3 was conducted in the HIMAC proton beam @ 180 MeV.
- We achieved a rate of ~10⁷/cm²s in "normal" TOT + TOA mode with no loss of data!
- In the "counting" mode, we achieved a rate of ~10⁹/cm²s with no loss of data!
- Note that this was done with a new USB 3 interface, which achieves ~ 50% of the Timepix3's ultimate capability....

Time Of Arrival (pseudo-frame)

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

35

TOArt v. "Real" Art

20th WRMISS-Medipix in Space Pinsky – Sept. 10 2015 – Cologne

36

AND... Medipix4 HAS FORMED

- Unlike the previous Medipix Collaborations, Medipix4 will simultaneously design the Medipix4 (counting chip) and the Timepix4.
- It will employ the latest CMOS technology... (With Power Control Options...)
- The Chips will be much larger than the current ones and the Timepix4 will have smaller pixels..
- The Timepix4 will be able to function in either the frame-based or data-driven (500 Mhits/s) modes.
- Each pixel will have fungible output registers, and both TOT & TOA with ~ 780 ps time resolution, as well as a reduced threshold < 1 KeV (That is total per pixel and NOT KeV/μm)! These detectors are 100% efficient for penetrating charged particles...

Towards Timepix4

Improve energy resolution (TOT) and time resolution (TOA):

- TOT resolution limited by ENC only:
 - Minimize the quantization error
 - Target < 1 KeV
 - > 5 MeV <u>per pixel</u> in sensor sensitivity
- TOA resolution limited by front-end bandwidth, pixel noise and VCO frequency
 - Doubling local VCO frequency will half the TOA resolution

Provide Power Consumption Options

 Low Power modes (Partial Chip or Power down digital until needed. Also sensor current monitor modes possible.

Future (Potential) Devices

Omni-directional "Spectrometer" Cube

- 6-sided "hermetic" cube of Timepix4 devices
- Embedded Scintillator
- Single Synced (via Medipix) DAQ
- **Timepix4-based Neutron detector**
 - Based on current LHC (ATLAS) neutron monitors
 - Both Thermal and Fast Neutrons
- Timepix2 & Timepix4 Characterization
 - New Pseudo-Logarithmic response...
 - Timepix Particle Spectrometer Stacks
- ALTEA Collaboration...

Light Fragment Nuclear Interaction Cross Section Measurements

Thank you for your attention...

Sat Feb 15 00:40:52.242498 2014 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 42.2278 [uGy/min], Dose equivalent = 853.9796 [uSv/min], Occupancy = 4197

7

VE A P

Sun Dec 15 00:08:51.086856 2013 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 12.3410 [uGy/min], Dose equivalent = 347.3835 [uSv/min], Occupancy = 2663

Sat Dec 14 16:29:44.478190 2013 , Acq_Time = 4.0000 [s] I04-W0094 Dose = 33.5098 [uGy/min], Dose equivalent = 788.5636 [uSv/min], Occupancy = 1778

~

Mon Dec 02 21:47:04.889180 2013 , Acq_Time = 4.0000 [s] 103-W0094 Dose = 9.4817 [uGy/min], Dose equivalent = 200.5656 [uSv/min], Occupancy = 1598

1

Thu Feb 06 20:57:39.170058 2014 , Acq_Time = 4.0000 [s] D03-W0094 Dose = 141.9122 [uGy/min], Dose equivalent = 3237.9297 [uSv/min], Occupancy = 2038

Mon Apr 29 22:23:19.864237 2013 , Acq_Time = 4.0000 [s] D03-W0094 Dose = 37.5741 [uGy/min], Dose equivalent = 593.9044 [uSv/min], Occupancy = 1238

Thu Jan 31 22:56:31.255608 2013 , Acq_Time = 4.0000 [s] G03-W0094 Dose = 295.8055 [uGy/min], Dose equivalent = 4598.1747 [uSv/min], Occupancy = 3175

Fri Feb 07 09:17:54.853429 2014 , Acq_Time = 2.5395 [s] I04-W0094 Dose = 209.2499 [uGy/min], Dose equivalent = 3680.3618 [uSv/min], Occupancy = 2857

Fri Nov 09 19:11:41.661491 2012 , Acq_Time = 4.0000 [s] E06-W0087 Dose = 108.5174 [uGy/min], Dose equivalent = 1603.7414 [uSv/min], Occupancy = 2310

....

Wed Jan 15 07:31:00.296091 2014 , Acq_Time = 4.0000 [s] J02-W0156 Dose = 18.4267 [uGy/min], Dose equivalent = 450.0683 [uSv/min], Occupancy = 4081

Sun Jan 12 18:59:40.603276 2014 , Acq_Time = 2.6566 [s] G01-W0099 Dose = 22.3399 [uGy/min], Dose equivalent = 511.9285 [uSv/min], Occupancy = 3594

...

Wed Jan 08 21:40:15.653035 2014 , Acq_Time = 4.0000 [s] G03-W0094 Dose = 29.7793 [uGy/min], Dose equivalent = 672.5660 [uSv/min], Occupancy = 1626

7

Tue Feb 18 02:09:33.132259 2014 , Acq_Time = 4.0000 [s] G03-W0094 Dose = 38.2716 [uGy/min], Dose equivalent = 789.7881 [uSv/min], Occupancy = 3112

Fri Feb 14 15:01:36.526700 2014 , Acq_Time = 1.1816 [s] I04-W0094 Dose = 79.9586 [uGy/min], Dose equivalent = 1638.6990 [uSv/min], Occupancy = 3160

Thank You for Your Attention Oh Yes! The DEMO

