#### Matroshka-R and Radi-N2 Experiments using Bubble Detectors: ISS-43/44 and ISS-45/46



Martin Smith, Bubble Technology Industries 21<sup>st</sup> WRMISS, Noordwijk, the Netherlands September 6<sup>th</sup> – 8<sup>th</sup> 2016

### Collaboration



M.B. Smith<sup>1</sup>, S. Khulapko<sup>2,3</sup>, H.R. Andrews<sup>1</sup>, V. Arkhangelsky<sup>2</sup>, H. Ing<sup>1</sup>, M.R. Koslowsky<sup>1</sup>, R. Machrafi<sup>4</sup>, I. Nikolaev<sup>3</sup>, V. Shurshakov<sup>2</sup>, L. Tomi<sup>5</sup>

 <sup>1</sup>Bubble Technology Industries, PO Box 100, Chalk River, Ontario, Canada KOJ 1J0
 <sup>2</sup>Institute for Biomedical Problems, Russian Academy of Sciences, 76A Khoroshevskoe sh., 123007 Moscow, Russia
 <sup>3</sup>RSC-Energia, 4A Lenin str., 141070 Korolev, Moscow Region, Russia
 <sup>4</sup>Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, Canada L1H 7K4
 <sup>5</sup>Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, Quebec, Canada J3Y 8Y9









### Introduction

- Radiation prediction, monitoring, and protection technologies are a key part of every space mission involving humans
  - The risk to space crews due to radiation in deep space may be a serious obstacle to Mars missions
- Neutrons are of particular interest to radiation health and protection
  - Measurements indicate that neutrons may represent 30% of the biologically-effective radiation exposure in low-Earth orbit
  - A significant neutron contribution is also expected in deep space
- Bubble detectors have been used to monitor neutrons in space since 1989 on recoverable Russian Biocosmos (Bion) satellites, the Mir space station, the space shuttle, and the ISS







#### **Bubble Detectors**

- Bubble detectors are passive dosimeters manufactured by Bubble Technology Industries
- They contain superheated liquid droplets dispersed in an elastic polymer
- High-LET particles interact with the droplets to form bubbles
- The elastic polymer retains the bubbles to allow visible detection of radiation
- After each measurement, the bubbles can be recompressed and the detector can be reused



NEUTRONS



#### **Space Bubble Detectors**

- Two types of bubble detector are used to monitor neutrons for the Matroshka-R and Radi-N2 experiments on the ISS
  - Space personal neutron dosimeter (SPND)
  - Space bubble detector spectrometer (SBDS), a set of six detectors, each with a different energy threshold, that provides a coarse neutron energy spectrum
- Space bubble detectors use a stronger polymer than terrestrial detectors
  - Allows bubbles to grow slowly during a week-long measurement
- Detectors are temperature compensated
- Bubbles are counted with the space mini reader located in the Russian segment







#### **ISS Measurement Locations**





Image from NASA

### **ISS Bubble-Detector Experiments**





#### Matroshka-R (2006 - present)

- Neutron dose equivalent inside a tissue-equivalent phantom was less than that at its surface
- Neutron dose equivalent in the Service Module was ~30% of the total recorded by other devices
- Solar activity and altitude did not strongly affect the neutron dose equivalent or energy spectrum



#### Radi-N (2009)

- First spectroscopic measurements
- Neutron dose equivalent and energy spectrum were not strongly dependent on location
- Neutron dose equivalent in the sleeping quarters was less than received during daily activities
- Water shield reduced the neutron dose equivalent by ~30%



#### Radi-N2 (2012 – present)

- Continued measurements in the same locations used for Radi-N
- Good agreement with Radi-N data
- Confirmed that solar activity and ISS altitude have little effect on neutron radiation inside the ISS
- Ongoing goal is to collect at least ten weeks of data in each module and to measure a full solar cycle



| Session | Initialization Date | Retrieval Date    | Prime Location | Back-Up Location |
|---------|---------------------|-------------------|----------------|------------------|
| 43/44-1 | 24 March 2015       | 31 March 2015     | Columbus       | Service Module   |
| 43/44-2 | 16 April 2015       | 23 April 2015     | Service Module | Service Module   |
| 43/44-3 | 19 May 2015         | 26 May 2015       | Service Module | Service Module   |
| 43/44-4 | 12 June 2015        | 18 June 2015      | Node 2         | Service Module   |
| 43/44-5 | 14 July 2015        | 21 July 2015      | Columbus       | Service Module   |
| 43/44-6 | 12 August 2015      | 19 August 2015    | Node 2         | Service Module   |
| 45/46-1 | 18 September 2015   | 25 September 2015 | JEM            | Service Module   |
| 45/46-2 | 16 October 2015     | 23 October 2015   | Node 2         | Service Module   |
| 45/46-3 | 13 November 2015    | 20 November 2015  | US Lab         | Service Module   |
| 45/46-4 | 24 December 2015    | 31 December 2015  | JEM            | Service Module   |
| 45/46-5 | 13 January 2016     | 20 January 2016   | US Lab         | Service Module   |
| 45/46-6 | 12 February 2016    | 19 February 2016  | JEM            | Service Module   |

#### **Radi-N2: SPND Dose Rate**





#### **Radi-N and Radi-N2: SBDS Data**





#### Radi-N and Radi-N2: SBDS Dose Rate





#### Radi-N and Radi-N2: SBDS Dose Rate

- The SBDS dose equivalent, summed over all sessions, is similar in each of the four USOS locations
  - This observation is in good agreement with the SPND data
- The SBDS data suggest that ~60% of the dose equivalent is due to neutrons with energy > 15 MeV
  - This percentage is higher than previously reported
- Changes in solar activity and ISS altitude since 2009 did not have a strong influence on the neutron field
- Conclusions will be finalized once data have been acquired for a full solar cycle (2009 – 2020)





#### Matroshka-R: ISS-43 to ISS-46

- For Matroshka-R, a total of 14 weeklong measurements were conducted during ISS-43/44 and ISS-45/46
- Each used a spectrometer (SBDS) and two dosimeters (SPNDs)
- All experiments occurred in the Russian Service Module
- These measurements included
  - First measurements on panel 239
  - Further experiments using a hydrogenous shield
  - Measurements in the least and most shielded locations in the Service Module



#### Service Module, panel 239



### Matroshka-R: Panel 239

- Four sessions were conducted on panel 239 in the left crew quarter during ISS-43/44
- These were the first bubble-detector measurements in this location
- SPND and SBDS results are in good agreement with each other
- Dose equivalent for this location is similar to that measured elsewhere in the ISS





#### Matroshka-R: Hydrogenous Shielding

- Many experiments were conducted using a hydrogenous shield during the ISS-22 to ISS-33 increments
- These measurements used SPNDs to show that the shielding reduced the neutron dose equivalent
- Dose equivalent behind the hydrogenous shield was 77 ± 17% of the unshielded value
- This is similar to a result (72 ± 17%) measured using bags of water in the JEM (ISS-21)



SPND results from ISS-24 and ISS-25/26



#### Matroshka-R: Hydrogenous Shielding

- Two sessions were performed during ISS-43/44 using two SBDS sets and four SPNDs
- Prime detectors were located on the illuminator side of the shield, while the back-up detectors were situated on the cabin side of the shield
- This was the first direct comparison of the neutron dose equivalent on each side of the hydrogenous shield
- As expected, the dose equivalent on both sides of the shield is lower than previous results from unshielded locations
- Dose equivalent in the two locations appears to be approximately the same



Illuminator side of the shield



Cabin side of the shield

#### Matroshka-R: Hydrogenous Shielding





#### Matroshka-R: Least/Most Shielded

- During the six sessions of ISS-45/46, a shielding experiment was performed in the Service Module
- Based on extensive measurements and theoretical calculations, two locations have been identified that represent the least and most shielded locations in the Service Module
  - The least shielded location is on panel
    121, near the big illuminator window
  - The most shielded location is on panel 435, near the crew working table



#### Least shielded, panel 121



Most shielded, panel 435



# Matroshka-R: Least/Most Shielded

- Results indicate that the neutron dose equivalent at panel 121 and panel 435 is similar
- This seems to contradict the conclusion that the two locations are the least and most shielded in the Service Module
- However, the earlier observations were based on the total dose due to all radiation, not specifically due to neutrons
- The bubble-detector results indicate that the production of secondary neutrons in the two locations is similar





## **ISS-47/48 Measurements**

- A further six pairs of sessions were conducted during the recent ISS-47/48 increment
- Three measurements were performed for Radi-N2: two in Columbus and one in Node 2
- Matroshka-R experiments focussed on improving counting statistics in and around the spherical phantom (behind panel 206 in the MRM1 module)
- A new mini reader launched to the ISS in July 2016 and successfully performed its first readings in August 2016
- Analysis of data from ISS-47/48 is in progress





![](_page_19_Picture_9.jpeg)

![](_page_20_Picture_1.jpeg)

| Session | Initialization Date | Retrieval Date | Prime Location | Back-Up Location |
|---------|---------------------|----------------|----------------|------------------|
| 47/48-1 | 8 March 2016        | 15 March 2016  | Pirs           | MRM1/phantom     |
| 47/48-2 | 6 April 2016        | 13 April 2016  | Pirs           | MRM1/phantom     |
| 47/48-3 | 3 May 2016          | 10 May 2016    | Columbus       | MRM1/phantom     |
| 47/48-4 | 2 June 2016         | 9 June 2016    | Columbus       | MRM1/phantom     |
| 47/48-5 | 6 July 2016         | 13 July 2016   | Node 2         | MRM1/phantom     |
| 47/48-6 | 10 August 2016      | 16 August 2016 | _              | MRM1/phantom     |

For the six sessions with the phantom, two sets of four detectors alternated between the inside of the phantom and the phantom surface

Session 6 included an inter-comparison of the original and replacement mini readers

# Plans for ISS-49/50

![](_page_21_Picture_1.jpeg)

- Six pairs of sessions are planned for the upcoming ISS-49/50 expedition
- Radi-N2 is nearing its goal of collecting ten weeks of data in each of the four initial locations (US Lab, Columbus, the JEM, and Node 2)
- Experiments up to 2020 will aim to extend Radi-N2 to other USOS modules, while continuing surveys in the initial locations to assess a full solar cycle
- Measurements in Node 1, Node 3, and the Cupola have been discussed
- Radi-N2 sessions during ISS-49/50 are planned for the US Lab, Columbus, Node 2, and Node 3
- Some of these measurements will be conducted with bubble detectors colocated with NASA's IV-TEPC and ISS-RAD
- Plans for ISS-49/50 in the Russian segment are being finalised

### **Summary and Conclusions**

![](_page_22_Picture_1.jpeg)

- Bubble-detector experiments were performed for Radi-N2 and Matroshka-R during ISS-43/44 and ISS-45/46 (to February 2016)
- For Radi-N2, ten sessions were conducted, including all four USOS locations
  - The measured dose equivalent is very similar in each of the four modules
  - SBDS data suggest that approximately 60% of the dose equivalent is due to neutrons with energy > 15 MeV
  - Variations in potential influence quantities such as solar activity and ISS altitude seem to have little effect on the neutron dose equivalent
- Fourteen sessions were performed for the Matroshka-R experiment
  - First measurements on panel 239
  - Further experiments using a hydrogenous shield
  - Measurements in the least and most shielded locations in the Service Module
- Radi-N2 and Matroshka-R experiments are ongoing
  - Six pairs of sessions were conducted for ISS-47/48 and six are planned for ISS-49/50
  - Plans up to 2020 are under discussion

### Acknowledgements

![](_page_23_Picture_1.jpeg)

- We would like to thank the following for their important contributions
  - The astronauts and cosmonauts who performed the measurements
  - NASA's Space Radiation Analysis Group (SRAG) for supporting the experiments
  - The Canadian Space Agency and the Russian Space Agency for funding the work
- References for recent publications
  - R. Machrafi et al., Radiat. Prot. Dosim. 133(4), 200 207 (2009)
  - B.J. Lewis et al., Radiat. Prot. Dosim. 150(1), 1 21 (2012)
  - M.B. Smith et al., Radiat. Prot. Dosim. 153(4), 509 533 (2013)
  - M.B. Smith et al., Proc. 65<sup>th</sup> IAC, IAC-14.A1.4.3 (2014)
  - M.B. Smith et al., Radiat. Prot. Dosim. 163(1), 1 13 (2015)
  - M.B. Smith et al., Radiat. Prot. Dosim. 164(3), 203 209 (2015)
  - M.B. Smith et al., Radiat. Prot. Dosim. 168(2), 154 166 (2016)

![](_page_23_Picture_14.jpeg)

![](_page_23_Picture_15.jpeg)

![](_page_23_Picture_16.jpeg)

![](_page_23_Picture_17.jpeg)

![](_page_24_Picture_0.jpeg)

# **BACK-UP SLIDES**

#### **Radi-N2: Recent SBDS Data**

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

#### **Bubble Detector Response Function**

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

#### **Bubble Detector Response Function**

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

#### ISS-22 to ISS-33: Altitude

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

#### ISS-22 to ISS-33: Solar Activity

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

#### **MRM2: SBDS Dose Rate**

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

#### **MRM2: SPND Dose Rate**

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)