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Scientific objectives of the 14 Liulin experiments?

1. Measurement of the variatiohs of the flux and dose rate from GCR, SCR, IRB and ORB
in LEO and in-interplanetary space. Use of data in models;
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Dose calculation procedure applied in Liulin instrument

By definition the dose in the silicon detector Dg, [Gy] is one joule
deposited in 1. kg of matter. The LTK absorbed dose is calculated by
dividing the summarized energy deposition in the spectrum in Joules by
the mass of the detector in kilograms:

255

D, [Gy] = KZ(ELJ)[J]/ MDIkg]

where K is a coefficient. MD is the mass of the detector and =
is fﬁ”’energy loss in Joules in channeli. The-energy in MeV IS
=~ - proportional to the amplitude A of the pulse:
EL.[MeV]=A[V]/0.24[VIMeV{s»where 0.24[V/IMeV] is a coeff|C|ent

dependent on the preamplifier used and its sensitivity.

-

All 255 deposited dose valuespdependlng on the deposited -
~energy-for one exposure period, form the deposited energy spectrum.
Channel 256 accumulates all pulses wuth_ampli_udes higher than the

- upper energy of 20.83 MeV measured by the spectrometer.

; : s 24th WRMISS workshop,
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The following four primary radiation sources were expected and
recognized in the data obtained with the Liulin instruments:

— Globally dlstrlbuted GCR particles and those derived from

AA region of the inner. radiation bel

— ri‘-'lrlfl‘ll,)l'lg ele irJn:s and/or: grarnsssrmnlun NgINIHen
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Example of the selection procedure used with
the R3DR2 instrument

- These 10 days plots were used for the
selection of the all 441 days data,;

- The selection curve is the black line in
the middle of the plots;

- Galactic cosmic rays (GCR) are shown
by red points in the lower part of each
figure;

—Shermaximuminithe centrum plotted

e
-

" ORB
IRB with blue points (OGRB)'is generated by
" SEP&SP nigh-energy. electrons;

- The maximum in the upperdeft corner of:

thetigure plotted by green points:(IRB):is

created by high-energy protens.when the
JISS'crossesithe region Oithe SAA;
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Final result of the separation of the R3DR2 instrument data for the
period 24 October 2014-11 January 2016 in four radiation sources*
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The energy spectra of GCR, measured at Earth, are significantly influenced by .;j_jm;
the Sun’s activity. Traversing the heliosphere, GCRs interact with the ' '
expanding solar wind and its embedded turbulent magnetic field, undergoing
convection, diffusion, adiabatic energy losses, and particle drifts because of
the global curvature and gradients of the heliospheric magnetic field.
Therefore, the intensity of GCRs at Earth decreases with respect to the GCR
energy spectrum outside the heliosphere. This solar modulation has large
effects on low energy cosmic rays (less than a few GeV), while the effects
gradually subside as the energy increases, becoming negligible above a few
tens of GeV (Strauss & Potgieter, 2014)*
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between 4 and 6.2 during 14 Liulin-type experiments between 2001 and 2019.The "

@ Liulin data are compared (red doted line) with the monthly values of the
modulation parameter, reconstructed from the ground based cosmic ray data*
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Carrier name, Number
Experiment name, of meas ; Dose| DIF

Orbit inclination Resolut. e | rem2 | rate | ratio

[Deg], Estimated Main : ) Gy .
L ) \ ¥ [nG&.
Shielding [ cm?] |  Reference [Ff] pae

part-1
Inside "MIR" 35, 02/01/1991, 30/12/1591
(Dachev et al_,
1989)

Inside American 11/05/2001, 25/07/2001
segment of ISS, (Dachev et al.,
Liulin-E094 2002)
(MDU-1), 51.8°, =20

Inside American 11/05/2001, 25/07/2001 X : ; 84 Same as in row
segment of ISS, (Dachev et al , 3 : 21
Liulin-E094 2002)
(MDU-2), 51.8°, =20
Inside American 11/056/2001, 25/0712001 B,755; 30; 4 Same as in row
seqgment of ISS, (Dachev et al., =426 21
Liulin-E094 2002)
(MDU-3), 51.8°, =20
Inside American 11/05/2001, 2510712001 3 - 30; : : Same as in row
seqment of IS5, (Dachev et al., E : 21
Liulin-E094 2002)
(MDU-4), 51.8°, =20

: of Foton-M2 | 01/06/2005, 11/06/2005
satellite, R3D-B2, (Hader et al.,
62°,1.75 2009)

Qutside of Foton-M3,[  14/09/2007, 26/09/2007 ; 60; : 1.004
satellite, R3D-B3, |({Damasso et al., > :
62°,0.71 2009)

Inside of Foton-M3, 14/09/2007, 26/09/2007 ; : 2. 1.064
satellite, Liulin- (Damasso et al., E 2
Photo, 62°, =5 2009)

. : b 24th WRMISS workshop,
SR, JAS Nt ; Athens, 3-5 September 2019
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Outside of HotPay2
rocket, Liulin-R,
Apogee at 14.04°E,
T0.67°N). =20

31/01/2008
(Tomov et al.,
2008)

31/01/2008

1:30; 44

Outside of 155 ESA
Columbus module,
R3DE, 51.8°, 0.3

22/02/2008

(Dachev et al.,

2012a)

220672009

107.900;
10:
=4=62

Qutside of
Chandrayaan-1,
satellite, RADOM,
Maoon encounter,
0.45

29/10/2008

(Dachev et al.,

2011)

071172008

52,6588; 10

230,526

Outside of IS5
“Zvezda” module,
R3DR, 51.8% 03

20/02/2010,
{Dachev et al.
2015)

20/08/2010

Inside of BIOM-M No
1, satellite,
RD3-B3, 65°, =20

19/04/2013,
{Dachev et al.
2014)

13/05/2013

6.442; 60;
=4<6.2

Inside of Foton-M
MNo.4, satellite,
RD3-B3. 657, =20

18/07/2014
{Dachev et al.
2015)

311082014

5,998; 60;
=4<5.2

399

Same as in row
10

155, R3DR2Z, 51.58°,
0.3

25/M10/2014,
{Dachev et al.
2017)

10/01/2016

322,709,
10;
=4<6.2

47

Same as in row

Qutside of ExoMars
Trace Gas Orbiter
TGO, Liulin-MQ,
transit to Mars,
~10

22/04/2016,

(Semkova et al.,

2018)

15/09/2016
(Still operable in
Mars orbit)

2164;
3600

75,880.6
58

Inside of Ten-Koh
satellite,
Liulin Ten-Koh,
a7.8°, ~10

29/10/2018
(Fajardo et al.,
2019)

16/01/2019
(Still operable in
Earth orbit

12; 2962,
=T

24th WRMISS workshop,
Athens, 3-5 September 2019
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uMBEnN d

‘The analysis of Table 1 shows that the 12 experiments in LEO was
performed at wide range of shielding from 0.3 up to >20 g cm?,
average altitudes from 278 up to 610 km and globally distributed

: latitudes and longitudes.
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Overview of the near Earth radiation environment
obtained by RADOM instrument

Chandrayan-1, RADOM 22 October 2008
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Experimental altitudinal profile of the dose rate, flux and
D/F values, obtained by Liulin instruments

Chandrayan-1 1 Free spoace,
RADOM, 04/11- 1 TTimek-deLL (100%)
06/11/2008 - ] i GCR+secondary
103000-252000 km BRI VPPY : Outer radiation belt
B 1 maximum,

Chandrayan-1 ] D/E<1 1-10 MeV electrons
RADOM 1 electr SAA -
26/10/2008 h g maximum,
Alt. 380-91000 km B ) 23 MeV protons

D/F> -
BION-M, PA3-E3, SAA maximum,

21/04/-13/05/2013 | 38 MeV protons
SAA maximum
ISS, R3DE

37 MeV protons
02/2008-06/2009 -
Alt. 345-375 km Photzer maximum

GCR + secondary

(km)

Rocket, Liulin-R Civil aircraft flight
Andoya, 31/12/2008 level = 10.67 Km

Alt. 212-376 km GCR + secondary

Altititude !

NASA DSTB EERY o SEP (GLE 60)
Balloon flight ] _,;:j - 3 15.04.2001
Liulin-4U MDU#1 Sl A
08/06/2005 - Flux minimum
Alt. up to 37.3km | -~ 7 s p— T GCR + secondary
- g Dose rate Ground natural
radiation dose rate
(15%) GCR

Aircraft flights 1 8 ;
Liulin-4C MDU-5 1.E-1 s . R — -

22/03-07/05/2001 _“1.E2 1.E1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E#
Alt. 0.09-11.9km | .- Dose rate (uGy h-1); Flux (cm2 s-1)
D/F (nGy cm? particle)
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@@ Altitudinal profiles, obtained by the RADOM instrument on the Indian |$
Chandrayaan-1 Moon satellite in low latitudes. Slow rise of the GCR dose
rate from 1.5to 2 uGy htis observed in the altitude range from 297 to
1700 km

UMBEN
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1500 - e | £'1500
Q0 . y X
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GCR flux, dose rate and D/F altitudinal profiles, obtained by the &
RD3-B3 instrument on the Foton-M No.4 satellite in L range
between 4 and 6.2. Slow rise of the GCR dose rate with altitude
from 7 to 8 nGy h'lis observed |

Altitude (km)

il
-
LIE . il

2 8 10 12 14
Dose rate (nGy h-1)

2 in]la-1
D/F (nGy cm* particle™) 24th WRMISS workshop,
Athens, 3-5 September 2019
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G\ﬁ We believe, that the observed above 300 km alt.itudinal profiles

@ at low and high latitudes are continued down to the altitudes of
< the Pfotzer maximum as shown by Makhmutov et al., 2016*

Table 1: Balloon cosmic ray measurements in the atmosphere in October, 2014
: ‘oordinates 22.10.2014 | 24.10.2014
3'S, 93°00°E LPI
Apatity (RU) 67°33°N, 33°24°E LPI
Moscow (RU) 55°45°N, 37°3T'E 2.3 LPI
Reading (UK) S1°27°N, 07 38'W
Zaragoza (Spain) 41°9°N, 0°54'W 4.6 RDG. LPI
Mitzpe-Ramon (Israel) | 30°36°N, 34°48°FE

£
=
o
-
= |
=
=
=

Flux, cm?s?
o
i

. 4
*hitps://www.researchgate.net/publication/298791930° Cosmic ray_measurements_in the atmospher

e _at several latitudes_in_October 2014

=
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The conclusion'_from the altitudinal dependence
investigation in 350-620 km range is:

The dose rate value.
nigniatituaesrare m-n
v=ln—r;ung In'the profile ar

e . i i y y w =T i J
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Global distribution of the dose rate at about 350 km
altitude. The map is obtained by averaging of more of 2000
hours ~ 90 days of data. Remarkable is the curve similarity .

between the lines of equal dose rate and L-value
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~ Latitude

Effective vertical magnetic cutoff rigidities for the 2010 epoch calculated

by Smart and Shea using the IGRF 2010 internal reference field for Kp=3;

the color bar indicates the notional hazard level based on the increased
(lower rigidity) particle flux at higher latitudes (Shea & Smart, 2012)

Hozards from cutoff rigidities for Kp 3

Space Environment Technologies vB.36
—100

100

Longitude .
GV) (red = greatest dose hazard; courtesy SSSRC

Kp=3 cutoff rigidities (Re

25 23 22
: ' “24th WRMISS workshop,

Athens, 3-5 September 2019
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All range L-value profiles of flux, dose rate and D/F data
observed between 18 July and 31 August 2014 during the
Foton-M No.4 experiment

The GCR flux and dose rate
data shows minimum in the
equatorial region, slow rise
toward L=4 and long
horizontal tail with equal
values toward the maximum
L-value of 35.5.

D/F (nGy cm? part.-)

We conclude that:

- The GCR doses-and fluxes in
Lrange 4<L<6.2tepresent
adequately the whole L range, -
which values is close to the
free space GCR value.
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L-value profiles of the measured dose rate during 5 experiments
between 2001 and 2009, which are characterized with decreasing
solar activity and respectively increasing GCR dose rates

Foton-M23, R3D-B3 & Liulin-Photo, 14-26 Sept., 2007,
& =>=5g 1::m-2

* Dose Liulin-Photo —
F ;..

" Dose R3D-B3 = 10.70 pGy h-!
Dose Liulin-Photo = 10.82 nGy h-!
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- The conclusion from the latitudinal dependencé-
investigation in 350-620 km range is:

Geomagnetic shielding, measured by the vertical cutoff
rigidity (Smart & Shea, 2012), is the reason for reduced GCR
fluxes and dose rates at low L values in previous slide and
the slightly rising dose rate toward L values of 2.5 (Shea et
1985) At these increasing L values the vertical cutoff

ses, and the major amount of the

GCRISpPECira penetrate down tothe ISSiorbits Atthigher: L
Values; L J,J {o) | =-5), tNec JJSP feiis n:“ | 'nan ValUENECAUSE

| erage dose rate values from 2001 t0'2040- =
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@ The more shielded by surrounding constructions R3DE
@ Instrument measure larger GCR doses than the R3DR instrument
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% Less shielded R3D-B3 instrument dose rates in the SAA region are larger and
extends to larger L-values, while the Liulin-Photo averaged GCR dose rates
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are higher in the 4<L<6 10.82-10.7

=0.12 pGy h'l

Foton-M3, R3D-B3 & Liulin-Photo, 14-26 Sept., 2007,
60s,0.81&>59gcm

Dose R3D-B3 = 10.70 pGy h'l

Av. Dose Liulin-Photo = 10.82 uGy h-t

L-value

e : Outside of the satellite
Inside of the satellite : - 0.71 g cm=2 shielding

P, w1
>5 g cm==shielding 24th WRMISS workshop,
- r : Athens, 3-5 September 2019
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The GCR dose and flux for L>10 are higher when lid is closed,
because the secondary's and neutrons produced in the lid

Foton M3; R3D-B3 ' 11.12-11.04
September 14-26 2007 -0.08 uGy h-l

Lid open (0.81 glcm*2)

Lid closed {~5.8 glcm*2)

DIF (nGy em”2/event)

The BIOPAN facilities are
installed on the-external
surface of Foton descent
capsules.it-has a motor-driven
hinged lid, which opens 180°in
Earth-orbit to exposethe ;
expertment samples to the -
space environment. -

=
=
Q
=
@
@
=3
(=]

Flux (em"-2 5~-1)

' A 24th WRMISS workshop,
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Comparison of data between R3DE instrument outside ISS (0.3 ¢
cm-2 shielding) and Liulin-ISS inside Russian segment (>20 g cm™
shielding)
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The conclusion from the shielding dependence investigation
| in 350-620 km range is:
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: between 4 and 6.2 during 14 Liulin-type experiments between 2001 and 20109.
@ The Liulin data are compared with the monthly values of the modulation
parameter (red line) from the ground based cosmic ray data*
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Additional information for the formation of the dose rate values in
the previous slide :

1. Never the less that different calibration were performed with LIULIN

(Dachev et al, 1998) the final coefficient for the transformation of the pulse

rate from the VFC to dose rate was overestimated. To match better the
LIULIN data with other observations we modlfy them by subtractlon of 5
nGy h-1 from the original va
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Comparison of Liulin GCR dose measurements with other
experiments and models
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KN Example of middle range GCR measurements comparison
@ by 2 DOSTEL devices and R3DR2 instrument on ISS

—RD3R2 GCR
—Oulu NM [Cts/sec]

m ’ful
nl

=
k=
)
>
Q
=
o

Oulu NM [Cts/s]

. ' b 24th WRMISS workshop,
S, A AY; 1 Athens, 3-5 September 2019



http://www.bas.bg/

The short term variations of the global GCR dose rate
are in good coincidence with the Oulu NM count rate and depends by
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@@ Comparison of measured (m) by Liulin-E094 four MDUs inside American Geze3
segment of ISS with calculated (c) by NASA HZTRN model average dose
rates
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Statistical validation of HZETRN as a function of vertical cutoff
rigidity using ISS measurements
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a4 There is relatively good coincidence between our flux data and the
GCR flux data used in the paper by Kuznetsov et al., 2017*
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*Kuznetsov,'N. V., H. Popova, anhd M. |. Panasyuk (2017), Empirical model of long-time variations of galactic
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Comparison of the measured with Liulin instruments dose
rates data with the GCR calculations in free space
by Banjac et al., 2019
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deep space —Accounting for detector size, shape, material, as well as for the solar modulation. J. Space Weather
SpaceClim. 9, A14. 2
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Comparison of the measured with Liulin instruments dose
rates data with the GCR calculations for CRaTER shielding
by Banjac et al., 2019*

CRaTER-ux + 3.3mm + 8.45mm Al (this work)
=~ = CRaTER-pu (this work) x Liulin data
—— CRaTER-u (Si)
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: Shaded area = error due to 20% uncertainty in ¢
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*Banjac S, Berger L, Burmeister S GU0'9; Heber B; et al. 2019. Galactic Cosmic Ray induced absorbed dose rate in
deep space —Accounting for detector size, shape, material, as well as for the solar modulatlon J. Space Weather
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| 3 ~ Conclusions

» The most important achievement of the paper is the proof of
the solar modulation of the long-term variations of the
averaged flux and dose rates observed in the L range

between 4 and 6.2 or outside the magnetosphere during 14
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TTI§ The L>4 hourly dose rate variations don’t coincide so well with the Oulu {2
= NM variations probably because the much larger statistics of the globally
averaged data (7633 measurements per day from possible 8640). The
_ L>4 statistic is based in average on 901 measurements per day -
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Altitudinal profile up to ~ 90,000 km

100000
~2 per. Mov. Avg. (Dose)
——2 per. Mov. Avg. (Flux)
——2 per. Mov. Avg. (DIF)

GCR
Av. dose rate
=13 uGy h-t

700 energy

£
—
@
=]
=
—
=
<C

D/F<1
ORB
electrons

D/IF>1
IRB low energy|
protons

0
0.1 1 10 100 1000 10000 100000

Dose rate (uGy h*'); Flux (cm2 s-1); D/F (nGy cm? part.”") &

; : S _ 24th WRMISS workshop,
SRT, BAS R b T ' Athens, 3-5 September 2019



http://www.bas.bg/

Preliminary outlook of the available GCR dose rate data and
of the dose rate variation between 4 and 13 pGy h-t
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