

Update for the MSL/RAD Investigation

Bent Ehresmann and the MSL/RAD Team

WRMISS Athens, Greece 5 September 2019

RAD High-Level Overview

- RAD is part of NASA's MSL mission and is measuring the Martian surface radiation environment in Gale crater on board Curiosity since August 2012
- The RAD sensor head consists of 3 Si detectors (*A-C*), a CsI scintillator (*D*), and a plastic scintillator (*E*), as well as a further plastic scintillator (*F*) acting as *anti-coincidence*.
- RAD measures:
 - Neutral Particle spectra (neutrons and γ-rays) in D and E (in AC with F) & Charged particle spectra and integral fluxes distinguished into separate isotopes (H & He) or groups of ion species (higher Z)
 - LET(Si) spectra are measured in B & dose in B (Si) and E (plastic / tissue-equivalent)

RAD Stopping Particle Measurements / Energy Spectra – Z = 1 and 2

 Can we increase the proton spectra (differential fluxes) with a combination of RAD data, simulations, and first order calculations?

Empirical Approach

- Started with spreadsheet of Bethe-Bloch energy deposition calculations for various proton energies in MSL-RAD
- Noticed that log(D+E+F)/ (A+B+C) showed some correlation with the true incident proton energy.
- Not really linear but maybe ok in restricted ranges, i.e., piecewise.

Energy Loss Simulation

- MSL-RAD stack simulated.
- Smearing is probably too large.
- Top plot is scatter, bottom plot is average of "thing" (y-axis unit) vs. proton energy.
- Looks a lot like the plot on the previous page, which it should, because it all uses the same implementation of Bethe-Bloch.

Piece-Wise Linear Fits

- Break into 3 ranges on y-axis: 4.25 to 5.5, 5.5 to 6.5, 6.5 to 7.15.
- These more or less map into broad but nonetheless discrete energy bins – not perfectly, but not terribly.

Apply to Real Data with Cuts to Select Penetrating Protons

- A2*B coincidence (L2[1] and/or L2[3] trigger).
- A2 energy deposit > A1 energy deposit.
- C, D, E, F2 all have slow tokens set.
- B and C both have between 120 and 450 keV energy deposited.
- D has between 15 and 62 MeV energy deposited.
- E has between 4 and 30 MeV energy deposited.

Results

Extending the RAD Proton Energy Range

- Look at data period for first MSL-RAD Modeling Workshop, since we have this nice plot from Daniel Matthiae.
- Overlay 3 new points encouraging.
- Work in progress → Potential 10% upward correction identified.

On sol 1455, Curiosity drove up close to a location, called Murray Buttes, where it parked for 13 sols.

On sol 1455, Curiosity drove up close to a location, called Murray Buttes, where it parked for 13 sols.

MSL Mastcam mosaic of Murray Buttes

Artist's concept of an astronaut to scale with Murray buttes, Curiosity right Mastcam, sol 1419

NASA / JPL / MSSS / Seán Dorar

Astronaut inserted for scale (credit: NASA/JPL)

What did RAD see while parked at the Murray Buttes?

Murray Buttes blocked out a part of the upper hemisphere above RAD, resulting in a decrease in radiation 14

- Initial analysis from Cary
- Before Murray Buttes CRaTER and RAD track each other well
- Can we use this to calculate the "missing" dose?
- Can L2 counters reveal interesting information about the "quality" of the drop in dose
- Counters with AxB trigger shouldn't show any drop in dose but could be used as sanity check
- What do neutral counters show? (drop due to lower primary flux? / more secondaries created in the Buttes near RAD?)
- Do heavy ions show bigger drop due to fragmentation?

Change of Quality Factor <Q> with Pressure / Altitude

- As Curiosity continues to climb in altitude, the atmosphere above the rover is, in turn, getting less and less
- Less atmospheric mass means incoming GCRs undergo fewer interactions with the atmosphere
- GCRs lose less energy & lower probability of heavy ions fragmenting → relative fraction of heavy ions in the surface radiation field increases
- As a result the quality factor <Q> of the radiation field increases → more biologically harmful

2nd Mars Radiation Modeling Workshop (16-18 Oct 2018)

- After the highly successful first iteration, the 2nd Mars Radiation Modeling Workshop, supported and encouraged by NASA HEOMD, was held in Boulder in October 18
- Modeling results of the Mars radiation environment showed great improvements from the first workshop
- Modelers were able to use the knowledge gained to identify areas of improvements in model setups and included physical processes, based on the comparison to *in-situ* RAD measurements from the Martian surface
- However, there are still discrepancies to be found between the models themselves and between models and measurements
- Hopefully, a future 3rd Workshop can improve the models even better
- The interplay between measurement and model improvements highlights the continued need for in-situ measurements to baseline models against

2nd Mars Radiation Modeling Workshop (16-18 Oct 2018)

Modeled deuteron and neutron fluxes on the surface of Mars from the 2nd Modeling Workshop (graphs courtesy of Daniel Matthiä (DLR & RAD team)) 18

Summary & Conclusions

- RAD continues its *highly successful* measurements of the Martian surface radiation on board NASA's Curiosity rover (7+ years of operations), measuring effects of the changing solar modulation, as well as effect from solar sources (SEP events, Forbush decreases, etc.)
- The RAD team is currently working on *extending* the energy spectral range for protons from 100 MeV out to > 500 MeV. First results look very promising!
- "Radiation shadowing" from the Murray Buttes, detected by RAD, leads to the interesting question:
 - Can future human explorers *utilize Mars' natural geological properties* for radiation protection? (Manuscript in preparation)
- 2nd Mars Modeling Workshop was again a great success, showing how in-situ RAD measurements are crucial for improving radiation transport / prediction models
- RAD has only detected 5(!) direct SEP events on the surface of Mars so far (in 7+ years)!
- We need a *larger data set* of RAD measurements to reliably assess the *impact of SEPs* on future human explorers! In particular, as we have no measurements of SEP spectra in the orbit → Making radiation risk assessments for *Mars* based on spectral measurements at *1 AU* is highly *challenging*!

Thank You!

- RAD is supported by NASA (HEOMD/AES) under JPL subcontract #1273039 to Southwest Research Institute.
- ... and by DLR in Germany under contract with the Christian-Albrechts-University Kiel.