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Presentation Outline 
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• Orion  
• AstroRad 
• ISS Matroshka  

 
• Matroshka AstroRad Radiation Experiment (MARE) on Artemis 1 
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• The Orion Multipurpose Crew Vehicle (MPCV) is NASA’s next generation spacecraft 
for human exploration of the solar system 

• Exploration Flight Test 1 (EFT-1) successfully executed December 2014 
– High eccentricity high altitude orbit to 3600 mi 

• Artemis 1 is scheduled for 2020 
– Formerly referred to as Exploration Mission 1 (EM-1) 
– 21-42 days mission to Cis-lunar space 

• Artemis 2 is scheduled for 2022 
– First crewed flight 

• First Gateway element also scheduled for 2022 
• Power and Propulsion Element PPE 

• Artemis 3 is scheduled for 2024 
– First crewed mission to the lunar surface 

 

Orion MPCV 
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Image Credit: NASA 
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Orion Ionizing Radiation 

5 

• Orion spacecraft design requirements address both electronic systems (e.g., 
avionics) and crew protection   
– First NASA human spacecraft to implement an Ionizing Radiation Control Plan (IRCP) 

• Systematic decomposition of SRD high level requirement “Orion shall meet its functional, performance, and 
reliability requirements during and after exposure to the mission radiation environment” 

– First NASA spacecraft on which Crew radiation protection is levied as a design driving requirement 
• CxP-70024 Constellation Program Human Systems Integration Requirements 

– Spacecraft design “shall provide radiation protection  consistent with ALARA and not to exceed crew 
exposure of E = 150 mSv for design reference environment”  

• SLS-SPEC-159 Cross-Program Design Specification for Natural Environments 
– Aug 1972 Solar Particle Event SPE (King parameterization) 

• Evolution of radiation protection requirements beyond Orion 
– Townsend et al., Life Sciences in Space Research 17 (2018) 32–39 
– BFO limit of 250 mGy-equivalent for the design SPE chosen as Oct 1989 
– ALARA, storm shelter availability within 30 min of event onset  
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Orion Requirement Verification 
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• Crew Radiation Analysis 
– Manufacturing quality Orion CAD model 

• 20,000 parts & assemblies, 100 GB 
• Mass/density and material properties 

– Vehicle shielding by ray tracing  
• 4 origin points/crew member, 10k directions 

– Body self-shielding from anatomically correct 
human models (~600 organ points) 

– Ray-by-ray total converted to 3-material 
equivalents (Al, HDPE, H2O) 

– Point dose equivalent calculations by 
deterministic transport software HZETRN 
• Definition of design reference environment 

– Integrated to obtain organ dose equivalent 
– Effective dose calculated w/ tissue weighting 

factors per NCRP Report 132 (2000) 
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Cabin Configuration Optimization 
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• Optimization of cabin components locations in lieu of flying 
dedicated shielding 
– Quasi-exponential decay of radiation exposure w/ shielding areal density 
– Consistent with ALARA 
– Large number of variables renders closed solution difficult 
– Semi-analytical method example: visualization of additional shielding 

location required to achieve predefined target shielding thickness endpoint 

 
 SPE response

configuration(s)

C1 C2 C3 C4

ef
fe

ct
iv

e 
do

se
 E

 (m
Sv

)

0

50

100

150

200

250
606-F Analytic 
606-G Analytic 
606-G OPS I 
606-G OPS II 



H. Hussein  and T. Berger for the MARE team                  2019 WRMISS, Athens, Greece                            ©2019 Lockheed Martin, StemRad, DLR. All Rights 
Reserved 

Radiation Vest for Astronauts: AstroRad 
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• Collaboration between Lockheed Martin Space and StemRad Israel 
– Portable radiation protection for astronauts 
– Provides preferential protection to stem cell rich organs and tissues 
– Designed for flexibility and ergonomics 
– Ergonomic evaluation aboard the International Space Station pending                 

(launch on SpX-18 July 2019) 
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AstroRad 
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ISS Matroshka 

10 

• Series of radiation measurements in radiation therapy phantoms on ISS 
– Body internal dose mapping using radiation detectors on the surface of, and inside 

radiotherapy phantoms. Both extra- and intra-vehicular. 

MTR-1 539 days  
(2004−05) 

MTR-2A 337 days  
(2006) 

MTR-2B 518 days  
(2007−09) 

MTR-2 KIBO 310 days  
(2010−11) 

https://www.fp7-hamlet.eu 
 

https://www.fp7-hamlet.eu/
https://www.fp7-hamlet.eu/
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ISS Matroshka 
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ISS Matroshka 
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Matroshka AstroRad Radiation Experiment (MARE) 
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• Lockheed Martin invited feedback as part of Orion radiation 
protection efforts 

• Israel Space Agency (ISA) and the German Aerospace Center (DLR) 
proposed MARE as an international science payload 

• NASA approved the proposal in May 2017 and manifested it aboard 
the EM-1 (now Artemis 1) flight. 
 

• MARE description 
– Two tissue-equivalent radiation phantoms inside the Orion cabin 
– Fitted with active and passive radiation detectors 
– One phantom fitted with the StemRad-manufactured AstroRad vest 

• MARE is managed by DLR and ISA, with NASA as a co-PI 
– Lockheed Martin personnel co-located with Orion support 

development of MARE science objectives and efficient payload 
integration aboard the Orion vehicle 
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MARE: CIRS Phantoms 
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• ATOM® 702 Female model 
– Radiation phantom materials: Soft tissue, bone, cartilage, lungs, brain, breast, spinal disk, and spinal cord 
– 38 slices with custom 3-cm TLD/OSLD grid 
– Identical within manufacturing tolerances: Zohar 35.88 kg / Helga 35.99 kg 
– Artificial bone 

 

http://www.cirsinc.com/products/modality/33/atom-dosimetry-verification-phantoms 

http://www.cirsinc.com/products/modality/33/atom-dosimetry-verification-phantoms
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Helga TLD Positions 

15 

Helga: 1392, Zohar: 1383 (DLR: 6000 TLDs, NASA: 2-3000 TLDs/OSLDs) 
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MARE: CIRS Phantoms 
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• CT scan performed on each 
phantom 

• CT scan data are used to 
generate CAD models 

• CAD models are used for 
AstroRad vest customization 
and radiation analysis 



H. Hussein  and T. Berger for the MARE team                  2019 WRMISS, Athens, Greece                            ©2019 Lockheed Martin, StemRad, DLR. All Rights 
Reserved 

MARE: Bio-modeling 
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• CAD Bio-modeling 
– Courtesy of W. Paul 

Segars, Ph.D., Duke 
University School of 
Medicine 

– Outlines organ shapes 
within the average soft 
tissue 

– Associates TLD grid 
locations with specific 
organs, allowing for 
organ dose 
calculations (analytic 
prediction & 
measurements) 
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MARE: DLR Voxel Model 

18 
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MARE: Orion configuration 
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Helga            Zohar 
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MARE: Vibration Test 
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MARE: Structural Analysis 
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Location Radiation Detectors 
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Location Radiation Detectors 
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Helga            Zohar 

M-42 Compact  DLR 
M-42 Split  DLR 
CAD  NASA 
DOSIS PDP  DLR 
ALMAR Herado 
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DLR M42 

24 

• Silicon Detector 
– 1 cm2 area, 300 µm thickness 
– Energy range 0.06-20 MeV (Si), 1024 channels 
– Autonomous operation 
– Launch detection (accelerometer) 
– Two versions “Split” and “Compact” 

Berger et al.   (2019) The DLR M-42 radiation detector – a new development for 
applications in mixed radiation fields. Review of Scientific Instruments (Under Review) 
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DLR M42 DUS-NRT and return 

25 

  M-42_C M-42_D PANDOCA 

    [µGy] in Si   

DUS-NRT 20.94 21.55 21.34 
NRT-DUS 24.99 25.12 24.97 

TABLE III: Results of the measurements of the total flight absorbed dose in Si 
compared with the DLR PANDOCA calculations. 

 

FIG. 14. (a) and (f) Flight level for the flight from Düsseldorf (DUS), 
Germany to Tokyo Narita (NRT), Japan and from NRT to DUS; (b) and (g) 
measured pressure for the flights;  (c) and (h) count rates; (d) and (i) 
absorbed dose rates in Si as well as the absorbed dose rate in Si 
calculated with the DLR PANDOCA model; (e) and (j) cumulative dose for 
the data given in (d) and (i). 
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DLR M42 HIMAC Exposure 

26 

Energy [MeV]

0,1 1 10

C
ou

nt
s 

[a
.u

.]

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

H180 [M-42_S] 
He230 [M-42_S] 
C400 [M42_S] 
O400 [M-42_S] 

Energy [MeV]

0,1 1 10

C
ou

nt
s 

[a
.u

.]

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

H180 [M-42_C] 
He230 [M42_C] 
C400 [M-42_C] 
O400 [M42_C] 

HIMAC Research Project 17H374  
 
 



H. Hussein  and T. Berger for the MARE team                  2019 WRMISS, Athens, Greece                            ©2019 Lockheed Martin, StemRad, DLR. All Rights 
Reserved 

DLR M42 MAPHEUS 7 and 8 testing 

27 

• Load detector test performed aboard MAPHEUS DLR research rockets 
– Max Altitude = 260 km 
– Flight Time = 14 min 10 s (6 min microgravity) 
– Launched from ESRANGE, Kiruna, Sweden (Feb 2018 + July 2019) 
– Dose rate: 239.8 µGy/day in Si 
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• Load detector test performed aboard MAPHEUS DLR research rockets 
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NASA CAD 

29 

• Crew Active Detector 
• ISS Tech Demo was successfully completed in July 

2018, transition to ISS operational use in progress 
• Variable storage rate, no load detector needed 
• Direct Ion Storage (Mirion Technologies) 
• Mass <35 g, volume = 5.4 x 3.4 x 1.8 cm3 

• Battery life >10 months (configuration dependent) 
• Display for crew information includes dose rate and 

cumulative dose  
• Additional CADs to be flown on Artemis 1 outside of 

MARE 
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DOSIS 3D PDP 
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• Dose Distribution Inside the International Space Station - 3D 
– DLR lead effort to dose map all the ISS segments (2012 – 2018) 
– Passive Dosimeter Package (PDP) includes TLDs + OSLDs + CR-39 PNTDs 
– Large international participation includes: 

• Technical University Vienna, ATI, Austria 
• Institute of Nuclear Physics, IFJ, Krakow, Poland 
• Centre for Energy Research, MTA EK, Budapest, Hungary 
• Belgian Nuclear Research Center, SCK•CEN, Mol, Belgium 
• Nuclear Physics Institute, NPI, Prague, Czech Republic 
• Oklahoma State University, OSU, Stillwater, USA 
• National Institute of Radiological Sciences, NIRS; Chiba, Japan 
• NASA JSC, Houston, TX, USA 

https://upload.wikimedia.org/wikipedia/de/0/07/SCK-CEN-Logo.svg
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ESA Active Dosimeter (EAD) 

31 

• Provided by the European Space Agency 
– Also referred to as EAD Mobile Unit – Orion 

(MU-O) 
• Based upon the existing ISS EAD MU 

– ISS EAD system also includes docking station 
– MU-O requires upgraded battery lifetime 
– Additional instances of the EAD MU-O baselined to 

fly on Orion Artemis 1 outside of MARE 

• Mass 150 g, volume 6x10x3 cm3 

• Thin/Thick Silicon Detector 
• Instadose® 
• RadFET 
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Artemis 1 

32 

• First Orion test flight beyond Earth orbit scheduled for 2020 
– Uncrewed flight on Distant Retrograde Lunar Orbit (DRO) 
– Solar minimum: intense GCR, low probability of SPE 
– Van Allen protons useful as SPE surrogate 
– Trajectory through Van Allen belts dependence upon launch date causes ~2x spread in environment (AP-8) 
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Payload Integration Status 

33 

• Successfully completed combined PDR/CDR (Mar 2019) 
– Structural analysis, Vibration testing 

• Successfully completed Phase 0/I/II Safety Reviews (Mar 2019) 
• Installation validation in the Orion Structural Test Article 

– Mass representative mock-ups (Scheduled for first week of October 2019) 
• Science activities 

– Additional detectors from HERADO / Hellenic space Agency / Thessaloniki University (Greece) 
– Environment and Dose Projection Refinements 

• Late stow vehicle installation 

• Artemis 1 Flight (2020) 
• Post-flight data processing, consolidation and publication  

– AstroRad vest improvements 



H. Hussein  and T. Berger for the MARE team                  2019 WRMISS, Athens, Greece                            ©2019 Lockheed Martin, StemRad, DLR. All Rights 
Reserved 

Conclusion 
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• Orion is the first Exploration architecture component 
– MARE is among the first Orion payloads 

• International collaboration is critical to successful space exploration 
• MARE as example of upcoming science research opportunities 

Our goal is to improve astronaut safety and enable Exploration 
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Orion Design for Crew Radiation Protection 
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• Matured throughout the vehicle design 
– Early in the program the Master Equipment List included 254 lbm of Polyethylene radiation shield 
– Dedicated shielding mass was progressively reduced and ultimately eliminated 
– Current baseline relies on design and operational reconfiguration of cabin in case of SPE  
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• 2016 Human In The Loop testing in the NASA JSC Orion med-fidelity mockup 

Radiation Shelter Evaluation 

Image Credit: NASA Image Credit: NASA 
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https://www.youtube.com/watch?v=70GrihLXmSs
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• Central stowage bays designated as radiation shelter 

Nominal Cabin Configuration 

Image Credit: NASA 
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• Central stowage bays designated as radiation shelter 

Cabin Reconfigured for SPE 

Image Credit: NASA 
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Radiation Analysis Verification by Measurement 

39 

• Exploration Flight Test 1 (EFT-1) opportunity to validate radiation analysis 
– High energy re-entry trajectory traversed the core of the Van Allen belts 
– Passive (RAMs, OSLDs) and active (BIRD) on-board radiation detectors  
– Measurements correlate well with predictions based on planned trajectory and AP-8 model 

EFT-1 Flight Data
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• Dynamic radiation environment 
• Radiation transport modeling 
• Detector efficiency vs Z/LET 

• Body self-shielding 
• Internal body dose mapping 
• Biological Z/LET susceptibility 
• Biological endpoints 

 

Analysis validation continues 
on future flights toward 

improved astronaut safety 
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