RECENT MEASUREMENT OF THE ISS ENVIRONMENT USING TIMEPIX-BASED HARDWARE

24th Workshop on Radiation Monitoring for the ISS Athens, Greece

Sept 04, 2019

N. Stoffle, Ph.D., P.E.

Leidos Innovations Corporation NASA JSC Space Radiation Analysis Group

Introduction ●০০০	REM 2 0000	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
TIMEPIX S		TEAM				

The majority of support on Timepix-related projects at NASA consists of people affiliated with NASA Johnson Space Center and the University of Houston:

→ T. Campbell-Rickets, D. Fry, R. Gaza, S. George, M. Leitab, L. Pinsky, E. Semones, N. Stoffle, M. Vandewalle, S. Wheeler, C. Zeitlin

Additional people that support(ed) the science team include:

 \rightarrow A. Bahadori, S. Hoang, J. Idarraga, M. Kroupa, R. Rios, D. Turecek

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

TIMEPIX ON ISS

Timepix hardware on ISS

- \rightarrow REM
- \rightarrow MPT
- \rightarrow REM2
- \rightarrow ISS HERA

Timepix Review

- \rightarrow Hybrid pixel detector
- $\rightarrow \ 256 \ x \ 256 \ @ \ 55 \mu m \\ pitch$
- \rightarrow ToT mode with energy calibration

Introduction ○○●○	REM 2 0000	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides				

RADIATION ENVIRONMENT MONITOR PAYLOAD^[1]

- \rightarrow Modified IEAP Timepix Lite Units
- \rightarrow 5 delivered to ISS in 2012
- \rightarrow 9 units flown in total
 - \rightarrow 3 units currently on ISS
 - $\rightarrow\,$ 2 functioning and 1 disconnected
 - $\rightarrow~$ 300 and 500 μm sensors
- \rightarrow Payload support to end in 2019

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

HARDWARE FAILURES AND LESSONS LEARNED

7+ years experience with Timepix in space

Observed Failure Modes

- → FET component
- \rightarrow USB solder bonds

Applied Failure Repair

- \rightarrow Shunted FET
- → Reflow solder

Lessons Learned

- \rightarrow Extension cables minimize crew impact / vibration stress
- → Software as a service or dedicated hardware to address up-time
- ightarrow Wirebond damage possible during ground disassembly/repair

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

RADIATION ENVIRONMENT MONITOR 2 - HARDWARE UPDATES

Goal: Replace passive detectors with active instruments

- → Move REM from experiment to area monitoring
- → Flight certification of Advacam MiniPIX units and USB cables
- \rightarrow 7 units/cables flown on SpX-16
- \rightarrow 6 flight spares ready for manifest

Benefits:

- \rightarrow Increase cadence of area monitoring data
- \rightarrow Minimize up/down mass
- → Reduce crew time for passive hardware retrieval/deploy

Introduction	REM 2 ○●○○	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
ACQUISIT	ION OPS					

- → Data acquisition controlled via Pixelman^[2] application on Station Support Computers (SSCs)
- \rightarrow As of GMT041, Pixelman runs as a service on SSCs
 - → Increases hardware up-time
 - → Allows plug-and-play capability for hardware deploy and tracking

- → Oreo SSC load (GMT163) includes Pixelman on all ops SSCs
- → Minimal crew time required; reconnect or move units
- → GUI included to allow crew to view current data and trending

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

DEPLOY LOCATIONS

ISS hardware and shield distributions as of May 2019

Introduction	REM 2 000●	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
DAILY DOS	SES					

Figure 1: REM2 daily doses (in si) as measured since hardware was deployed on 2019 GMT041

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

HYBRID ELECTRONIC RADIATION ASSESSOR (HERA)

Exploration Mission monitoring hardware

- \rightarrow Capable of 4 sensors per system
 - \rightarrow Local sensor on Processing Unit
 - \rightarrow Up to 3 remote Sensor Units
- $\rightarrow\,$ On-system processing and analysis
- → Active telemetry for crew displays and ground monitoring
- → Caution and Warning capability for crew/ground alerts

Introduction	REM 2 0000	HERA on ISS o●ooo	Interesting Data	Conclusion	References	Additional Slides
ISS HERA						

→ EM-1 HERA unit certified for ISS

- \rightarrow 1 Processor Unit
- \rightarrow 2 Sensor Units
- → 3D printed mounting frame (Ultem)
- \rightarrow Power and Data cables
- → Mounting frame allows minimal footprint and orthogonal measurements
- → Station Support Computer interface allows data transmission via TCP/IP

Introduction	REM 2 0000	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides

ISS HERA PAYLOAD OBJECTIVES

- → Test Artemis-1 HERA in the space environment
- → Verify system capability for 30+ days of continuous operation
- → Gain experience with hardware and data analysis in a mission environment

Figure 2: ISS HERA deployed with RAD in Node 2

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

MEASUREMENT COMPARISONS

Figure 3: ISS HERA daily doses (in si) compared with RAD B detector

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00
						/

MEASUREMENT COMPARISONS

Figure 4: ISS HERA minute doses (in si) compared with RAD B detector

Introduction	REM 2 0000	HERA on ISS	Interesting Data ●○○	Conclusion	References	Additional Slides
HADRONI	C SHOWF	RS				

Frames such as this occur outside the SAA region on a regular basis and seem to be more common in areas with higher shielding mass

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

HEAVY IONS

Heavy lon tracks are also found consistently, though some are more spectacular than others

Introduction	REM 2 0000	HERA on ISS	Interesting Data ○○●	Conclusion	References	Additional Slides
	_					

DIRECTIONALITY

- $\rightarrow\,$ Static deploy locations allow detector coordinates to be linked with vehicle coordinate frame
- $\rightarrow\,$ Possibility of extracting data such as SAA pitch angle from REM2 data

Introduction	REM 2 0000	HERA on ISS	Interesting Data	Conclusion ●○	References	Additional Slides
SUMMARY	/					

- $\rightarrow\,$ REM2 hardware replaced passive area monitoring on ISS
- \rightarrow ISS HERA payload successfully demonstrated Artemis-1 system readiness
- \rightarrow Opportunities remain to extract additional information from Timepix on ISS

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

Questions?

Introduction	REM 2 0000	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
REFEREN	CES					

- N. Stoffle et al., *Timepix-based radiation environment monitor measurements aboard the International Space Station*, Nuclear Instruments and Methods in Physics Research A **782** (2015) 143–148.
- [2] D. Turecek et al., Pixelman: a Multi-platform Data Acquisition and Processing Software Package for Medipix2, Timepix and Medipix3 Detectors, Journal of Instrumentation 6 (2011) C01046.

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		0

REM2 DEPLOY IMAGES

Introduction	REM 2	HERA on ISS	Interesting Data	Conclusion	References	Additional Slides
0000	0000	00000	000	00		00

ADDITIONAL SHOWER FRAMES

