# CONTRIBUTION OF DIFFERENT PARTICLES ONBOARD BION-M1 ESTIMATED BY MEANS OF PLASTIC NUCLEAR TRACK DETECTORS

I. Ambrožová<sup>1</sup>, R.V. Tolochek<sup>2</sup>, O.A. Ivanova<sup>2</sup>, V.A. Shurshakov<sup>2</sup>

 <sup>1</sup> Nuclear Physics Institute of the CAS, Prague, Czech Republic
<sup>2</sup> Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia

## **Cosmic radiation**

- very complex (primary high-energy galactic and solar particles, particles trapped in Earth's radiation belts, secondary particles)
- plastic nuclear track detectors (PNTD)
- passive detectors small weight and dimensions, no need of power supply, easy manipulation ...
- TLD + PNTD → total absorbed dose, dose equivalent, quality factor

#### Plastic nuclear track detectors

- separation of different particles (dimensions of tracks → LET, shape of tracks, range in the material)
- multiple etching and detailed analysis of paired tracks



## Plastic nuclear track detectors

- Harzlas TD-1 (Nagase Landauer Ltd.), PADC, thickness 0.9 mm
- etching in 5N NaOH at 70°C, usually for 18 h, bulk etch rate about 0.83  $\mu$ m/h
- calibration at HIMAC (ICCHIBAN) and other heavy ion beams
- semi-automatic analysis (system HSP-1000 SEIKO Precision and software HspFit)
- LET (> 7 keV/ $\mu$ m), absorbed dose, dose equivalent



## Multiple etching – HIMAC

- tested using detectors irradiated at HIMAC
- Ne 400 MeV/u at HIMAC, different angles
- 18 + 18 hours etching



## Multiple etching – HIMAC

#### first etching



#### second etching



## Multiple etching

- 1) primary heavy ions
- 2) short-range particles that become over-etched
- 3) particles created inside the detector



first etching

second etching

#### **BION-M1**

- free-space flyer mission
- altitude 565–585 km, inclination 64,9°
- April 19 May 19 2013 (30 days)
- biological samples and detector instruments inside (pressurized and controlled temperature) and outside (unpressurized and uncontrolled temperature)





- Aluminum SPD boxes with detectors
- 4 SPD boxes inside the capsule, 2 outside





#### **BION-M1**

- detector from box 1 (inside) and box 5 (outside)
- 18 + 18 + 18 hours etching





### BION-M1 - box 1

• ~ 0.1 cm<sup>2</sup>, 2611 tracks



18h etching bulk etch ~ 15 μm

18+18h etching bulk etch ~ 30 μm

18+18+18h etching bulk etch ~ 45 μm

### BION-M1 – box 5

• ~ 0.013 cm<sup>2</sup>, 1785 tracks



18h etching bulk etch ~ 15 μm

18+18h etching bulk etch ~ 30 μm

18+18+18h etching bulk etch ~ 45 μm

## **Detected particles**

- long-range particles (LET > 7  $\mu$ m/keV, range > 30  $\mu$ m)
  - protons with energy from 1.3 to 6 MeV (LET up to 22 keV/ $\mu$ m)
  - alpha particles with energy from 5 to 130 MeV (LET up to 92 keV/ $\mu$ m)
  - heavier ions of primary cosmic radiation
- short-range particles
  - primary and secondary low-energy protons (LET up to 85 keV/µm)
  - low-energy alphas (LET up to 240 keV/ $\mu$ m)
  - target fragments, such as recoiled nuclei of carbon, oxygen and others

## BION-M1 – LET spectra



## BION-M1 – LET spectra



## BION-M1 – LET spectra



## BION-M1 – results

| Detector | N <sub>all</sub> /N <sub>long-range</sub> | N <sub>long-range</sub><br>[%] | D <sub>all</sub> /D <sub>long-range</sub><br>[mGy] | D <sub>long-range</sub><br>[%] | H <sub>all</sub> /H <sub>long-range</sub><br>[mSv] | H <sub>long-range</sub><br>[%] |
|----------|-------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------|
| box 1    | 2548 / 1468                               | 58                             | 4.6 / 2.6                                          | 56                             | 38.5 / 19.7                                        | 51                             |
| box 5    | 1722 / 1465                               | 85                             | 22.7 / 18.0                                        | 79                             | 93.1 / 58.2                                        | 62                             |

## Conclusions

- comparison of paired tracks → discrimination of primary highenergy nuclei of cosmic radiation from the secondary shortrange particles
- high-energy ions with long range
  - about 85% of all detected particles outside and about 60% inside the satellite
  - contribution to the absorbed dose about 80% outside and 55% inside the satellite
  - contribution to the dose equivalent about 60% outside and 50 inside the satellite

### Remarks

- contribution of short-range particles can be much higher, depending on the etching conditions
- identification of ions of primary cosmic radiation

## Acknowledgement

• This work was supported by OP RDE, MEYS, under the project CRREAT CZ.02.1.01/0.0/0.0/15\_003/0000481.



RESEARCH CENTRE OF COSMIC RAYS AND RADIATION EVENTS IN THE ATMOSPHERE



EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

