

Francis F. Badavi¹ Christopher J. Mertens² Tony C. Slaba²

¹Old Dominion University, Norfolk, VA, USA ²NASA Langley Research Center, Hampton, VA, USA

> WRMISS22 Workshop, Turin, Italy September 05 - 07, 2017

Motivation

Use AMS2 cosmic rays (GCR) proton and helium data, to highlight differences among 3 existing GCR models at \leq 3 GeV, and > 3 GeV ranges

AMS2 (Alpha Magnetic Spectrometer 2) STS 134 May 19, 2011 – present Data coverage: May 2011 - November 2013 (~922 days) Perigee/Apogee: 341 - 353 km. Inclination: 51.6° Period: 91 min. Proton E_K range: 0.43 - 1800 GeV (1.0 - 1800 GV) Helium E_K range: 1.2 - 3000 GeV (1.9 - 3000 GV) SAA data are excluded

Frequently used:

- [%]Badhwar-O'Neill (**BO American**)
- *Matthia, German Aerospace center (**DLR European**)
- *Nymmik, Moscow State University (MSU Russian)

≤ 3 GeV > 3 GeV

Not frequently used:

- ^Galprop

. . .

- &Dragon2+Helioprop
- 'HMF+NLGCE_F
- 'Webber-McDonald

*Matthia, D., et al. (2013), A ready-to-use galactic cosmic ray model, *Adv. in Space Res.*, v. 51, pp. 329–338

[#]Nymmik, R., et al. (1994), An analytical model, describing dynamics of galactic cosmic ray heavy particles, *Adv. in Space Res.*, v. 14, pp. 759-763

^Vladimirov A.E., et al. (2011), GALPROP WebRun: an internet-based service for calculating galactic cosmic ray propagation and associated photon emissions, arXiv.org >astro-ph.HE>arXiv:1008.3642v3
[&]Evoli C., et al. (2017), Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical Ingredients, arXiv.org>[astro-ph.HE]>arXiv:1607.07886v2
^IQin G., Shen Z. (2017), Modulation of galactic cosmic rays in the inner heliosphere, comparing with PAMELA measurements, arXiv.org> physics > arXiv:1705.04847v2
⁻Webber W.R., McDonald F.B. (2013), Recent Voyager 1 data indicate that on 25 August 2012 at a distance of 121.7 AU from the Sun, sudden and unprecedented intensity changes were observed in anomalous and galactic cosmic rays, Geophys. Res. Lett., 40, 1665

[%]Badhwar G.D., O'Neill P.M. (1994), Long term modulation of galactic cosmic radiation and its model for space exploration, *Adv. in Space Res.*, v. 14, pp. 749-757

Historical GCR Fits to Data - I

SOLAR MODULATION AND ENERGY DENSITY OF GALACTIC COSMIC RAYS G. Gloeckler and J.R. Jokipii The astrophysical journal, Vol. 148, April 1967

Historical GCR Fits to Data - II

ELEMENTAL AND ISOTOPIC COMPOSITION OF THE GALACTIC COSMIC RAYS

J. A. Simpson

Ann. Rev. Nucl. Part. Sci. 1983.33:323-81, 1983

BO/MSU/DLR GCR Proton and Helium Spectra

Scaled BO/MSU/DLR Proton and Helium Spectra

P.R.L. Paper on AMS2 Proton Data (May 2015)

International Space Station, Phys. Rev. Letters, 114

week ending 1 MAY 2015 PHYSICAL REVIEW LETTERS PRL 114, 171103 (2015) ဖွာ Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV $(1 \text{ GV-}1.8 \text{ TV}) \implies (0.43 \text{ GeV-}1.8 \text{ TeV})$ to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station M. Aguilar,²⁶ D. Aisa,^{33,34} B. Alpat,³³ A. Alvino,³³ G. Ambrosi,³³ K. Andeen,²² L. Arruda,²⁴ N. Attig,²¹ P. Azzarello,^{33,16} A. Bachlechner,¹ F. Barao,²⁴ A. Barrau,¹⁷ L. Barrin,¹⁵ A. Bartoloni,³⁸ L. Basara,^{3,37} M. Battarbee,⁴⁵ R. Battiston,^{37,a} J. Bazo,³³ U. Becker,⁹ M. Behlmann,⁹ B. Beischer,¹ J. Berdugo,²⁶ B. Bertucci,^{33,34} G. Bigongiari,^{35,36} V. Bindi,¹⁹ S. Bizzaglia,³³ M. Bizzarri,^{33,34} G. Boella,^{28,29} W. de Boer,²² K. Bollweg,²⁰ V. Bonnivard,¹⁷ B. Borgia,^{38,39} S. Borsini,³³ M. J. Boschini,²⁸ M. Bourquin,¹⁶ J. Burger,⁹ F. Cadoux,¹⁶ X. D. Cai,⁹ M. Capell,⁹ S. Caroff,³ J. Casaus,²⁶ V. Cascioli,³³ G. Castellini,¹⁴ I. Cernuda,²⁶ D. Cerreta,^{33,34} F. Cervelli,³⁵ M. J. Chae,⁴¹ Y. H. Chang,¹⁰ A. I. Chen,⁹ H. Chen,⁹ G. M. Cheng,⁶ H. S. Chen,⁶ L. Cheng,⁴² H. Y. Chou,¹⁰ E. Choumilov,⁹ V. Choutko,⁹ C. H. Chung,¹ C. Clark,²⁰ R. Clavero,²³ G. Coignet,³ C. Consolandi, ¹⁹ A. Contin, ^{7,8} C. Corti, ¹⁹ E. Cortina Gil, ^{16,b} B. Coste, ^{37,15} W. Creus, ¹⁰ M. Crispoltoni, ^{33,34} Z. Cui, ⁴² Y. M. Dai, ⁵ C. Delgado, ²⁶ S. Della Torre, ²⁸ M. B. Demirköz, ² L. Derome, ¹⁷ S. Di Falco, ³⁵ L. Di Masso, ^{33,34} F. Dimiccoli, ³⁷ C. Díaz,²⁶ P. von Doetinchem,¹⁹ F. Donnini,^{33,34} W. J. Du,⁴² M. Duranti,^{33,34} D. D'Urso,³³ A. Eline,⁹ F. J. Eppling,⁹
 T. Eronen,⁴⁵ Y. Y. Fan,^{44,c} L. Farnesini,³³ J. Feng,^{3,d} E. Fiandrini,^{33,34} A. Fiasson,³ E. Finch,³² P. Fisher,⁹ Y. Galaktionov,⁹
 G. Gallucci,³⁵ B. García,²⁶ R. García-López,²³ C. Gargiulo,¹⁵ H. Gast,¹ I. Gebauer,²²
 M. Gervasi,^{28,29} A. Ghelfi,¹⁷ W. Gillard,¹⁰ F. Giovacchini,²⁶ P. Goglov,⁹ J. Gong,³¹ C. Goy,³ V. Grabski,²⁷ D. Grandi,²⁸ M. Graziani,^{33,34} C. Guandalini,^{7,8} I. Guerri,^{35,36} K. H. Guo,¹⁸ D. Haas,^{16,e} M. Habiby,¹⁶ S. Haino,^{10,44} K. C. Han,²⁵ Z. H. He,¹⁸ M. Heil,⁹ J. Hoffman,¹⁰ T. H. Hsieh,⁹ Z. C. Huang,¹⁸ C. Huh,¹³ M. Incagli,³⁵ M. Ionica,^{33,34} W. Y. Jang,¹³ H. Jinchi,²⁵ K. Kanishev,^{37,15} G. N. Kim,¹³ K. S. Kim,¹³ Th. Kirn,¹ R. Kossakowski,³ O. Kounina,⁹ A. Kounine,⁹ V. Koutsenko,⁹ M. S. Krafczyk,⁹ G. La Vacca,²⁸ E. Laudi,^{33,34,f} G. Laurenti,^{7,8} I. Lazzizzera,³⁷ A. Lebedev,⁹ H. T. Lee,⁴⁴ S. C. Lee,⁴⁴ C. Leluc,¹⁶ G. Levi,^{7,8} H. L. Li,^{44,g} J. Q. Li,³¹ Q. Li,³¹ Q. Li,^{9,h} T. X. Li,¹⁸ W. Li,⁴ Y. Li,^{16,d} Z. H. Li,⁶ Z. Y. Li,^{44,d} S. Lim,¹³ C. H. Lin,⁴⁴ P. Lipari,³⁸ T. Lippert,²¹ D. Liu,⁴⁴ H. Liu,³¹ M. Lolli,^{7,8} T. Lomtadze,³⁵ M. J. Lu,^{37,i} S. Q. Lu,^{44,d} Y. S. Lu,⁶ K. Luebelsmeyer,¹ J. Z. Luo,³¹ S. S. Lv,¹⁸ R. Majka,³² C. Mañá,²⁶ J. Marín,²⁶ T. Martin,²⁰ G. Martínez,²⁶ N. Masi,^{7,8} D. Maurin,¹⁷ A. Menchaca-Rocha,²⁷ Q. Meng,³¹ D. C. Mo,¹⁸ L. Morescalchi,^{35,j} P. Mott,²⁰ M. Müller,¹ J. Q. Ni,¹⁸ N. Nikonov,²² F. Nozzoli,³³ P. Nunes,²⁴ A. Obermeier,¹ A. Oliva,²⁶ M. Orcinha,²⁴ F. Palmonari,^{7,8} C. Palomares,²⁶ M. Paniccia,¹⁶ A. Papi,³³ M. Pauluzzi,^{33,34} E. Pedreschi,³⁵ S. Pensotti,^{28,29} R. Pereira,¹⁹ N. Picot-Clemente,¹² F. Pilo,³⁵ A. Piluso,^{33,34} C. Pizzolotto,³³ V. Plyaskin,⁹ M. Pohl,¹⁶ V. Poireau,³ E. Postaci,² A. Putze,^{3,k} L. Quadrani,^{7,8} X. M. Qi,¹⁸ X. Qin,^{33,g} Z. Y. Qu,^{44,1} T. Räihä,¹ P. G. Rancoita,²⁸ D. Rapin,¹⁶ J. S. Ricol,¹⁷ I. Rodríguez,²⁶ S. Rosier-Lees,³ A. Rozhkov,⁹ D. Rozza,²⁸ R. Sagdeev,¹¹ J. Sandweiss,³² P. Saouter,¹⁶ C. Sbarra,^{7,8} S. Schael,¹ S. M. Schmidt,²¹ A. Schulz von Dratzig,¹ G. Schwering,¹ G. Scolieri,³³ E. S. Seo,¹² B. S. Shan,⁴ Y. H. Shan,⁴ J. Y. Shi,³¹ X. Y. Shi,^{9,m} Y. M. Shi,⁴³ T. Siedenburg,¹ D. Son,¹³ F. Spada,³⁸ F. Spinella,³⁵ W. Sun,⁹ W. H. Sun,^{9,n} M. Tacconi,^{28,29,15} C. P. Tang,¹⁸ X. W. Tang,⁶ Z. C. Tang,⁶ L. Tao,³ D. Tescaro,²³ Samuel C. C. Ting,⁹ S. M. Ting,⁹ N. Tomassetti,¹⁷ J. Torsti,⁴⁵ C. Türkoğlu,² T. Urban,²⁰ V. Vagelli,²² E. Valente,^{38,39} C. Vannini,³⁵ E. Valtonen,⁴⁵ S. Vaurynovich,⁹ M. Vecchi,⁴⁰ M. Velasco,²⁶ J. P. Vialle,³ V. Vitale,³³ S. Vitillo,¹⁶ L. Q. Wang,⁴² N. H. Wang,⁴² Q. L. Wang,⁵ R. S. Wang,⁴³ X. Wang,⁹ Z. X. Wang,¹⁸ Z. L. Weng,⁹ K. Whitman,¹⁹ J. Wienkenhöver,¹ H. Wu,³¹ X. Wu,¹⁶ X. Xia,^{26,g} M. Xie,^{9,h} S. Xie,⁴³ R. Q. Xiong,³¹ G. M. Xin,⁴² N. S. Xu,¹⁸ W. Xu,^{6,9} Q. Yan,⁹ J. Yang,⁴¹ M. Yang,⁶ Q. H. Ye,⁴³ H. Yi,³¹ Aguilar, M., et al. (2015), Precision measurement of the Y. J. Yu,⁵ Z. Q. Yu,⁶ S. Zeissler,²² J. H. Zhang,³¹ M. T. Zhang,¹⁸ X. B. Zhang,¹⁸ Z. Zhang,¹⁸ Z. M. Zheng,⁴ H. L. Zhuang,⁶ V. Zhukov,¹ A. Zichichi,^{7,8} N. Zimmermann,¹ P. Zuccon,⁹ and C. Zurbach³⁰ proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the

Scaled AMS2 Proton Data

*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Physical Review Letters*, *114*

P.R.L. Paper on AMS2 Helium Data (November 2015)

week ending 20 NOVEMBER 2015 PHYSICAL REVIEW LETTERS PRL 115, 211101 (2015) ဖွ Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV $(1.9 \text{ GV-3 TV}) \implies (1.2 \text{ GeV-3 TeV})$ to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station M. Aguilar,²⁶ D. Aisa,^{32,33} B. Alpat,³² A. Alvino,³² G. Ambrosi,³² K. Andeen,²² L. Arruda,²⁴ N. Attig,²¹ P. Azzarello,¹⁶ A. Bachlechner,¹ F. Barao,²⁴ A. Barrau,¹⁷ L. Barrin,¹⁵ A. Bartoloni,³⁸ L. Basara,³⁶ M. Battarbee,⁴⁷ R. Battiston,^{36,37,a} J. Bazo,^{32,b} U. Becker,⁹ M. Behlmann,⁹ B. Beischer,¹ J. Berdugo,²⁶ B. Bertucci,^{32,33} V. Bindi,¹⁹ S. Bizzaglia,³² M. Bizzarri,^{32,33} G. Boella,^{28,29} W. de Boer,²² K. Bollweg,²⁰ V. Bonnivard,¹⁷ B. Borgia,^{38,39} S. Borsini,³² M. J. Boschini,²⁸ M. Bourquin,¹⁶ J. Burger,⁹ F. Cadoux,¹⁶ X. D. Cai,⁹ M. Capell,⁹ S. Caroff,³ J. Casaus,²⁶ G. Castellini,¹⁴ I. Cernuda,²⁶ D. Cerreta,^{32,33} F. Cervelli,³⁴ M. J. Chae,⁴¹ Y. H. Chang,¹⁰ A. I. Chen,⁹ G. M. Chen,⁶ H. Chen,⁹ H. S. Chen,⁶ L. Cheng,⁴² H. Y. Chou,¹⁰ E. Choumilov,⁹ V. Choutko,⁹ C. H. Chung,¹ C. Clark,²⁰ R. Clavero,²³ G. Coignet,³ C. Consolandi,¹⁹ A. Contin,^{7,8} C. Corti,¹⁹ E. Cortina Gil,^{16,c} B. Coste,^{36,15} W. Creus,¹⁰ M. Crispoltoni,^{32,33} Z. Cui,⁴² Y. M. Dai,⁵ C. Delgado,²⁶ S. Della Torre,²⁸ M. B. Demirköz,² L. Derome,¹⁷ S. Di Falco,³⁴ L. Di Masso,^{32,33} F. Dimiccoli,^{36,37} C. Díaz,²⁶ P. von Doetinchem,¹⁹ F. Donnini,^{32,33} M. Duranti,^{32,33} D. D'Urso,^{32,d} A. Egorov,⁹ A. Eline,⁹ F. J. Eppling,^{9,*} T. Eronen,⁴⁷ Y. Y. Fan,^{46,e} L. Farnesini,³² J. Feng,^{3,46,f} E. Fiandrini,^{32,33} A. Fiasson,³ E. Finch,³¹ P. Fisher,⁹ V. Formato,^{32,15} Y. Galaktionov,⁹ G. Gallucci,³⁴ B. García,²⁶ R. García-López,²³ C. Gargiulo,¹⁵ H. Gast,¹ I. Gebauer,²² M. Gervasi,^{28,29} A. Ghelfi,¹⁷ F. Giovacchini,²⁶ P. Goglov,⁹ J. Gong,³⁰ C. Goy,³ V. Grabski,²⁷ D. Grandi,²⁸ M. Graziani,^{32,33} C. Guandalini, I. Guerri,^{34,35} K. H. Guo,¹⁸ D. Haas,^{16,g} M. Habiby,¹⁶ S. Haino,⁴⁶ K. C. Han,²⁵ Z. H. He,¹⁸ M. Heil,⁹ J. Hoffman,^{10,19} T. H. Hsieh,⁹ Z. C. Huang,¹⁸ C. Huh,¹³ M. Incagli,³⁴ M. Ionica,³² W. Y. Jang,¹³ H. Jinchi,²⁵ K. Kanishev,^{36,37,15} G. N. Kim,¹³ K. S. Kim,¹³ Th. Kirn,¹ M. A. Korkmaz,² R. Kossakowski,³ O. Kounina,⁹ A. Kounine,⁹ V. Koutsenko,⁹ M. S. Krafczyk,⁹ G. La Vacca,²⁸ E. Laudi,^{32,33,h} G. Laurenti,⁷ I. Lazzizzera,^{36,37} A. Lebedev,⁹ H. T. Lee,⁴⁵ S. C. Lee,⁴⁶ C. Leluc,¹⁶ H. L. Li,^{46,1} J. Q. Li,^{9,j} J. Q. Li,³⁰ Q. Li,³⁰ Q. Li,^{9,j} T. X. Li,¹⁸ W. Li,⁴ Y. Li,^{16,f} Z. H. Li,⁶ Z. Y. Li,^{46,f} S. Lim,¹³ C. H. Lin,⁴⁶ P. Lipari,³⁸ T. Lippert,²¹ D. Liu,⁴⁶ H. Liu,³⁰ Hu Liu,^{26,k} M. Lolli,⁷ T. Lomtadze,³⁴ M. J. Lu,^{36,*1} S. Q. Lu,^{46,f} Y. S. Lu,⁶ K. Luebelsmeyer,¹ F. Luo,⁴² J. Z. Luo,³⁰ S. S. Lv,¹⁸ R. Majka,³¹ C. Mañá,²⁶ J. Marín,²⁶ T. Martin,²⁰ G. Martínez,²⁶ N. Masi,⁷ D. Maurin,¹⁷ A. Menchaca-Rocha,²⁷ Q. Meng,³⁰ D. C. Mo,¹⁸ L. Morescalchi,^{34,m} P. Mott,²⁰ M. Müller,¹ T. Nelson,¹⁹ J. Q. Ni,¹⁸ N. Nikonov,²² F. Nozzoli,^{32,d} P. Nunes,²⁴ A. Obermeier,¹ A. Oliva,²⁶ M. Orcinha,²⁴ F. Palmonari,^{7,8} C. Palomares,²⁶ M. Paniccia,¹⁶ A. Papi,³² M. Pauluzzi,^{32,33} E. Pedreschi,³⁴ S. Pensotti,^{28,29} R. Pereira,¹⁹ N. Picot-Clemente,¹² F. Pilo,³⁴ A. Piluso, ^{32,33} C. Pizzolotto, ^{32,d} V. Plyaskin,⁹ M. Pohl,¹⁶ V. Poireau,³ A. Putze, ^{3,n} L. Quadrani,^{7,8} X. M. Qi,¹⁸ X. Qin,^{32,1} Z. Y. Qu,^{46,0} T. Räihä,¹ P. G. Rancoita,²⁸ D. Rapin,¹⁶ J. S. Ricol,¹⁷ I. Rodríguez,²⁶ S. Rosier-Lees,³ A. Rozhkov,⁹ D. Rozza,²⁸ R. Sagdeev,¹¹ J. Sandweiss,³¹ P. Saouter,¹⁶ S. Schael,¹ S. M. Schmidt,²¹ A. Schulz von Dratzig,¹ G. Schwering,¹ G. Scolieri,³² E. S. Seo,¹² B. S. Shan,⁴ Y. H. Shan,⁴ J. Y. Shi,³⁰ X. Y. Shi,^{9,p} Y. M. Shi,⁴³ T. Siedenburg,¹ D. Son,¹³ J. W. Song,⁴² F. Spada,³⁸ F. Spinella,³⁴ W. Sun,⁹ W. H. Sun,^{9,4} M. Tacconi,^{28,15} C. P. Tang,¹⁸ X. W. Tang,⁶ Z. C. Tang,⁶ L. Tao,³ D. Tescaro,²³ Samuel C. C. Ting,⁹ S. M. Ting,⁹ N. Tomassetti,¹⁷ J. Torsti,⁴⁷ C. Türkoğlu,² T. Urban,²⁰ V. Vagelli,^{22,32} E. Valente,^{38,39} C. Vannini,³⁴ E. Valtonen,⁴⁷ S. Vaurynovich,⁹ M. Vecchi,⁴⁰ M. Velasco,²⁶ J. P. Vialle,³ V. Vitale,^{32,d} S. Vitillo,¹⁶ L. Q. Wang,⁴² N. H. Wang,⁴² Q. L. Wang,⁵ R. S. Wang,⁴³ X. Wang,⁹ Z. X. Wang,¹⁸ Z. L. Weng,⁹ K. Whitman,¹⁹ J. Wienkenhöver,¹ M. Willenbrock,⁹ H. Wu,³⁰ X. Wu,¹⁶ X. Xia,^{26,i} M. Xie,^{9,j} S. Xie,⁴³ R. Q. Xiong,³⁰ N. S. Xu,¹⁸ W. Xu,⁹ Aguilar, M., et al. (2015), Precision measurement of the Q. Yan,⁹ J. Yang,⁴¹ M. Yang,⁶ Y. Yang,⁴⁴ Q. H. Ye,⁴³ H. Yi,³⁰ Y. J. Yu,⁵ Z. Q. Yu,⁶ S. Zeissler,²² C. Zhang,⁶ J. H. Zhang,³⁰ M. T. Zhang,¹⁸ S. D. Zhang,^{9,j} S. W. Zhang,⁶ X. B. Zhang,¹⁸ Z. Zhang,¹⁸ Z. M. Zheng,⁴ H. L. Zhuang,⁶ V. Zhukov, helium flux in primary cosmic rays of rigidity 1.9 GV to 3 TV A. Zichichi,^{7,8} N. Zimmermann,¹ and P. Zuccon⁹ with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Letters, 115

Scaled AMS2 Helium Data

Aguilar, M., et al. (2015), Precision measurement of the helium flux in primary cosmic rays of rigidity 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Phys. Rev. Letters*, *115*

Scaled AMS2 Proton and Helium Data

*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Physical Review Letters*, *114* Aguilar, M., et al. (2015), Precision measurement of the helium flux in primary cosmic rays of rigidity 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Physical Review Letters*, *114* Space Station, *Phys. Rev. Letters*, *115*

Scaled AMS2 Proton Data vs. GCR Models

*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Phys. Rev. Letters*, *114*

Scaled AMS2 Helium Data vs. GCR Models

Aguilar, M., et al. (2015), Precision measurement of the helium flux in primary cosmic rays of rigidity 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Phys. Rev. Letters*, *115*

AMS2 Lower Energy Proton Data vs. GCR Models

Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Phys. Rev. Letters*, *114*

AMS2 Lower Energy Helium Data vs. GCR Models

Aguilar, M., et al. (2015), Precision measurement of the helium flux in primary cosmic rays of rigidity 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Phys. Rev. Letters*, *115*

AMS2 Lower Energy Proton and Helium Data vs. GCR Models

*Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, <i>Phys. Rev. Letters</i> , <i>114</i> *Aguilar, M., et helium flux in private with the Alpha M Space Station, <i>Phys. Rev. Letters</i> , <i>114</i>	al. (2015), Precision measurement of the rimary cosmic rays of rigidity 1.9 GV to 3 TV Magnetic Spectrometer on the International <i>Phys. Rev. Letters</i> , <i>115</i>

Significance of Proton Exposure (E) in Each Energy Region

Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Phys. Rev. Letters*, 114

[#]Slaba, T. C., Blattnig, S. R. (2014), GCR environmental models I: Sensitivity analysis for GCR environments, AGU pubs., *Space Weather*, *12*, 217-224

Significance of Helium Exposure (E) in Each Energy Region

Aguilar, M., et al. (2015), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, *Phys. Rev. Letters*, *115*

[#]Slaba, T. C., Blattnig, S. R. (2014), GCR environmental models I: Sensitivity analysis for GCR environments, AGU pubs., *Space Weather*, *12*, 217-224

- Compared 3 GCR models prediction with AMS2 proton and helium data
- Showed that for AMS2 proton data, **BO** model is closest to the data in the region of greatest importance to astronaut exposure (≤ 3 GeV)
- Showed that for AMS2 helium data **DLR** model is closest to the data in the region of greatest importance for astronaut exposure (≤ 3 GeV)

PAMELA Specifications

Wizard collaborators: Italy, Germany, Sweden, Russia

PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) Host Satellite, Resurs DK1 (Soyuz-FG) June 15, 2006 - February 7, 2016 Data coverage: 2006 - 2010 Perigee/Apogee: 360 - 604 km. (~600 km. circular since 2010) Inclination: 70° Period : 94 min. Proton E_K range: 0.1 - 1000 GeV (0.6 - 1000 GV) SEP/SAA data are excluded

*Adriani, O., et al. (2011), PAMELA measurements of cosmic-ray proton and helium spectra, *Science*, *332*, p: 69-72, Apr. 2011