## MSL-RAD Summary of model calculations and comparison to RAD data

Daniel Matthiä

German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, 51147 Cologne, Germany

Knowledge for Tomorrow



## **Overview**

1. Update on the comparison of the calculated particle fluxes and dose rates with MSL-RAD data

2. "1<sup>st</sup> Mars Space Radiation Modeling Workshop" held in June 2016 in Boulder

3. Development of a parameterized radiation model for the Martian atmosphere at DLR









# 1. Update on the comparison of calculation/MSL-RAD measurements

Update on the comparison of the calculated particle fluxes and dose rates with MSL-RAD data (Now published: Matthiä et al. SWSC 6, A13, 2016)





## Setup for the simulations

- Atmosphere:
  - 22 g/cm<sup>2</sup>
  - Composition (mass %): 95.7% CO<sub>2</sub>, 2.7% N<sub>2</sub>,1.6% Ar (Mars-Gram 2001)
- **Soil:** ≥ 20m, composition from OLTARIS

| nsity: 1.7 g/cm <sup>3</sup>                                      |                             |
|-------------------------------------------------------------------|-----------------------------|
| Defined in Ter                                                    | ms of Molecular Percentages |
| Formula                                                           | Percentage(0 < p <= 100)    |
| O <sub>2</sub> Si                                                 | 51.2                        |
| Fe <sub>2</sub> O <sub>3</sub>                                    | 9.3                         |
| Al <sub>2</sub> CaK <sub>2</sub> MgNa <sub>2</sub> O <sub>7</sub> | 32.1                        |
| H <sub>2</sub> O                                                  | 7.4                         |
|                                                                   | Total 100.0                 |
|                                                                   |                             |

- **GCR-Input:** DLR and Badhwar/O'Neill 2010:
  - 19. Aug. 2012 (DoY 232, 2012) 17. Feb. 2013 (DoY 048, 2013) [182 days]
- Particles: neutron (10<sup>-8</sup> MeV to 10<sup>4</sup>MeV), proton (1MeV to 10<sup>5</sup> MeV), gamma (10<sup>-3</sup> MeV to 10<sup>4</sup> MeV), e<sup>-,+</sup> (10<sup>-3</sup> MeV to 10<sup>4</sup> MeV), deuteron, triton, <sup>3</sup>He, <sup>4</sup>He, Li/Be/B, C/N/O, Z=9-13, Z≥14 (all 1 MeV/n to 10<sup>5</sup> MeV/n)
- 4π, zenith angle < 30°



## GCR input spectra: DLR and Badhwar/O'Neill 2010



19. August 2012 (DoY 232, 2012) until 17. February 2013 (DoY 048, 2013) [182 days]



Proton, deuteron, triton, <sup>3</sup>He, <sup>4</sup>He Summary

- Zenith angle ≤30°
- MSL-RAD data: Ehresmann et al. 2014
- GEANT4, PHITS, OLTARIS2013, HZETRN/OLTARIS





## **Neutron and photon**

Matthiä et al. SWSC 6, A13 (2016)

- MSL-RAD data: Köhler et al. 2014
- Neutrons: (GEANT4, PHITS, HZETRN, OLTARIS2013)
  - Good agreement above 1GeV
  - Lower neutron fluxes from OLTARIS2013 below 1GeV (upward fluxes are missing)
- Photons:
  - Good agreement GEANT4/PHITS
  - HZETRN significantly lower (higher) at energies < 10MeV (>1GeV)





## **Comparison of calculated and measured dose rates**

|                                    | MSL-RAD<br>[Hassler et al., 2014] | GEANT<br>4.10.p02 | PHITS     | OLTARIS2013 | HZETRN/<br>OLTARIS |
|------------------------------------|-----------------------------------|-------------------|-----------|-------------|--------------------|
| absorbed dose<br>rate<br>[mGy/d]   | 0.21 ± 0.04                       | 0.19              | 0.20      | 0.16        | 0.18               |
| dose<br>equivalent<br>rate [mSv/d] | 0.64 ± 0.12                       | 0.52              | 0.60      | 0.52        | 0.54               |
| Quality factor                     | 3.05 ± 0.26                       | 2.7 (3.0)         | 3.0 (3.4) | 3.2         | 3.0 (3.2)          |

**NOTE:** Values in parenthesis are the derived quality factors for a restricted zenith angle  $\theta$ <30°.



# 2. "1st Mars Space Radiation Modeling Workshop" held in June 2016 in Boulder





## 1<sup>st</sup> Mars Space Radiation Modeling Workshop

- Organised by SWRI, NASA, DLR, CAU
- At SWRI, Boulder, June 28 30, 2016
- Goal: Extension of model comparison
  - new set of experimental data,
  - 15 Nov 2015 15 Jan 2016
- Similar approach as before



- Models:
  - FLUKA (K. Lee, NASA)
  - GEANT4 (D. Matthiä, DLR) -
  - GEANT4/HZETRN (A. Firan, R. Rios, NASA)
  - HETC-HEDS (W. de Wet, L. Townsend; Univ. of Tennessee) —
  - HZETRN (T. Slaba, NASA)
  - MCNP6 (L. Heilbronn, H. Ratliff, M. Smith; Univ. of Tennessee) →
  - PHITS (J. Flores-McLaughlin, NASA)



comparison paper submitted to LSSR

## Modeling workshop papers, accepted in LSSR

- Introduction
  - Hassler et al., "Mars science laboratory radiation assessment detector (MSL/RAD) modeling. workshop proceedings"
- Measurements:
  - Ehresmann et al., "The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016"
  - Guo et al., "Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15"
- Models:
  - de Wet & Townsend, "A calculation of the radiation environment on the Martian surface" (HETC-HEDS)
  - Flores-McLaughlin, "Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in **PHITS** compared to MSL-RAD measurements"
  - Matthia & Berger, "The radiation environment on the surface of Mars Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS"
  - **Ratliff et al.**, "Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6"
  - Slaba & Stoffle, "Evaluation of HZETRN on the Martian surface: Sensitivity tests and model results"
- Summary:
  - Matthiä et al., "The radiation environment on the surface of Mars Summary of model calculations and comparison to RAD data"





## Highlights from Ehresmann et al. (2017), "The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016"

 Measured integral charged particle fluxes

| Charge number and                          | RAD fluxes                                           | Minimum<br>energy | GCR flux                                                |
|--------------------------------------------|------------------------------------------------------|-------------------|---------------------------------------------------------|
| ion species                                | [cm <sup>-2</sup> s <sup>-1</sup> sr <sup>-1</sup> ] | [MeV/nuc]         | [cm <sup>-2</sup> s <sup>-1</sup><br>sr <sup>-1</sup> ] |
| Z = 1 (protons and other)                  | 0.267( ± 0.030)                                      | 135( ± 15)        | 0.226                                                   |
| $Z = 2 ({}^{3}\text{He}, {}^{4}\text{He})$ | $1.86( \pm 0.24) \cdot 10^{-2}$                      | 135( ± 15)        | 2.30.10-2                                               |
| Z = 3-5 (Li, Be, B)                        | $1.99( \pm 0.40) \cdot 10^{-4}$                      | 175( ± 25)        | $3.31 \cdot 10^{-4}$                                    |
| Z = 6-8 (C, N, O)                          | $6.26( \pm 1.20) \cdot 10^{-4}$                      | 250( ± 25)        | 1.31.10-3                                               |
| Z = 9-13 (F to Al)                         | $1.10( \pm 0.20) \cdot 10^{-4}$                      | 300( ± 25)        | $2.51 \cdot 10^{-4}$                                    |
| Z = 14-24 (Si to Cr)                       | 5.48( $\pm$ 0.20)·10 <sup>-5</sup>                   | 400( ± 25)        | 1.53.10-4                                               |
| $Z = \geq 25$ (Mn, Fe and<br>higher)       | $1.20(\pm 0.11) \cdot 10^{-5}$                       | 550( ± 25)        | 5.5410 <sup>-5</sup>                                    |

protons



Measured differential particle fluxes



### Highlights from Guo et al. (2017), "Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15"

 Measured neutron and gamma spectra above ~7 MeV



Dose rate and dose equivalent rate of the inverted Martian neutron spectrum (7–740 MeV) from 2015-11-15 to 2016-01-15 .

|                          | Dose rate                | Dose equivalent rate      |
|--------------------------|--------------------------|---------------------------|
| Power law inversion      | 5.6 $\pm$ 0.8 $\mu$ Gy/d | $25.3 \pm 3.3 \ \mu Sv/d$ |
| Full inversion           | 4.7 $\pm$ 0.9 $\mu$ Gy/d | $22.0 \pm 4.1 \ \mu Sv/d$ |
| Averaged final           | 5.1 $\pm$ 1.0 $\mu$ Gy/d | $23.6 \pm 4.1 \ \mu Sv/d$ |
| Mean total dose measured | 233 $\pm$ 12 $\mu$ Gy/d  | $610 \pm 45 \ \mu Sv/d$   |

 Dose rate from neutrons between 7 MeV and 740 MeV



## Highlights from de Wet & Townsend (2017), "A calculation of the radiation environment on the Martian surface"

 Results from HETC-HEDS using a cylindrical geometry



• Differential particle fluxes



## Highlights from Flores-McLaughlin (2017), "Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements"

- Results from PHITS for a spherical geometry
- Zenith angle dependence

- Differential particle fluxes
- Dose rates





## Highlights from Matthiä & Berger (2017), "The radiation environment on the surface of Mars – Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS"

- Results from GEANT4 for a box geometry
- Differential particle fluxes
- Analysis of upward/downward flux







## Ratliff et al. (2017), "Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6"

- Results from MCNP6
- Dose rates (per particle type)
- Differential particle fluxes



| Fable 1 | 2 |
|---------|---|
|---------|---|

Tabulated dose (D) and dose equivalent (H) values for  $4\pi$  calculations.

| Particle        | $D_{4\pi}\left(rac{\mu Gy}{day} ight)$ | $H_{4\pi}\left(rac{\mu S v}{day} ight)$ |
|-----------------|-----------------------------------------|------------------------------------------|
| Hydrogen        | $200.00 \pm 0.52\%$                     | $200.00 \pm 0.52\%$                      |
| Triton          | 252 + 44106                             | $2.86 \pm 4.27\%$                        |
| <sup>4</sup> He | $15.34 \pm 0.98\%$                      | 40.78 + 2.32%                            |
| <sup>3</sup> He | $3.59 \pm 3.56\%$                       | $15.58 \pm 4.31\%$                       |
| Li, Be, B       | $2.06 \pm 2.13\%$                       | $19.04 \pm 4.70\%$                       |
| C, N, O         | $5.52 \pm 1.29\%$                       | 25.19 ± 2.97%                            |
| Z = 9–13        | $2.18 \pm 1.24\%$                       | $23.89 \pm 1.71\%$                       |
| Z = 14–24       | $1.83 \pm 1.17\%$                       | $37.48 \pm 1.14\%$                       |
| Z = 25–28       | $0.69 \pm 2.64\%$                       | $4.11 \pm 2.51\%$                        |
| Ν               | 0.0642 ± 92.64%*                        | $0.3240 \pm 91.68\%^*$                   |
| Г               | $2.65 \pm 20.09\%$                      | $2.65 \pm 20.09\%$                       |
| e <sup>-</sup>  | $2.64 \pm 5.49\%$                       | $15.15 \pm 2.84\%$                       |
| e <sup>+</sup>  | $1.69 \pm 6.69\%$                       | $9.44 \pm 8.42\%$                        |
| μ-              | $15.16 \pm 1.66\%$                      | $15.16 \pm 1.66\%$                       |
| μ+              | $18.36 \pm 1.47\%$                      | $18.36 \pm 1.47\%$                       |
| π-              | $10.15 \pm 1.83\%$                      | $10.15 \pm 1.83\%$                       |
| π+              | $11.69 \pm 1.70\%$                      | $11.69 \pm 1.70\%$                       |
| Total           | 307.34 ± 0.43%                          | 473.13 ± 0.51%                           |



## Slaba & Stoffle (2017), "Evaluation of HZETRN on the Martian surface: Sensitivity tests and model results"

- Results from HZETRN
- Influence of regolith composition

#### Table 3

Integrated exposure quantities on the Martian surface using regolith definitions from Table 1.

| Regolith definition    | Dose in tissue (mGy/day) | Dose equivalent (mSv/day) | <sup>a</sup> Neutron effective dose (mSv/day) |
|------------------------|--------------------------|---------------------------|-----------------------------------------------|
| Default <sub>Reg</sub> | 0.172                    | 0.539                     | 0.163                                         |
| Viking 1               | 0.174                    | 0.579                     | 0.176                                         |
| Phoenix                | 0.167                    | 0.452                     | 0.124                                         |
| Mawrth Vallis          | 0.173                    | 0.563                     | 0.174                                         |



<sup>a</sup> The neutron effective dose column was obtained by folding the neutron spectra from Fig. 2 with isotropic neutron fluence to effective dose conversion coefficients from Pelliccioni (2000).

- Influence of atmospheric composition
- Comparison of BON2014 and DLR2013 model

#### Table 4

Integrated exposure quantities on the Martian surface using the BON2014 and DLR2013 GCR models.

| GCR model | Dose in tissue (mGy/day) | Dose equivalent (mSv/day) |
|-----------|--------------------------|---------------------------|
| BON2014   | 0.172                    | 0.539                     |
| DLR2013   | 0.177                    | 0.560                     |



**Fig. 3.** Charged particle fluxes on the Martian surface using the atmosphere definitions from Table 2. The neutron and Z = 14 flux results have been scaled by  $10^{-3}$  and  $10^2$ , respectively, to improve plot clarity.



#### Summary paper, neutral particles Matthiä et al. The radiation environment on the surface of Mars - Summary of

• Neutrons:

 differences of one order of magnitude (PHITS,HETC-HEDS,MCNP6)

 Photons: large underestimation of MCNP6 – π<sup>0</sup> transport not simulated → Underestimation of the electromagnetic cascade

neutrons GEANT4 HETC-HEDS HZETRN E\*f / (s⋅sr⋅cm²)<sup>1</sup> MCNP6 10<sup>-1</sup> PHITS  $10^{-2}$  $10^{-3}$  $10^{3}$  $10^{2}$  $10^{4}$ 10 E / MeV RAD photons GEANT4 HZETRN 10 f / (s·sr·cm<sup>2</sup>·MeV)<sup>-1</sup> MCNP6 10-2 PHITS 10<sup>-3</sup> 10-10<sup>-t</sup> 10-6 10-7 10<sup>3</sup> 10<sup>2</sup> 10  $10^{4}$ E / MeV

model calculations and comparison to RAD data. LSSR, in press 2017

RAD



## Summary paper, electron/positron

- large underestimation of MCNP6 π<sup>0</sup> transport not simulated → Underestimation of the electromagnetic cascade
- Order of magnitude differences at E<10MeV</li>

Matthiä et al. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data. *LSSR*, in press 2017





Summary paper, protons and He





Matthiä et al. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data. LSSR, in press 2017





## Integral particle fluxes



• Lower energy thresholds:

| Z           | 1   | 2   | 3-5 | 6-8 | 9-13 | 14-24 | >24 |
|-------------|-----|-----|-----|-----|------|-------|-----|
| E / (MeV/n) | 120 | 120 | 150 | 225 | 275  | 375   | 525 |



## Integral particle fluxes, ratio to RAD



- Mostly between 70% and 130% of RAD
- Tendency to under-predict Z=2, Z≥6



## **Dose rates and quality factor**

- No dose rates from HETC-HEDS
- Absorbed dose rates
  - Models: 0.17-0.31 mGy/d
  - RAD: 0.23 mGy/d
- Dose equivalent rates
  - Models: 0.47-0.69 mGy/d
  - RAD: 0.71 mSv/d
- Quality factor
  - Models: 1.5-3.1
  - RAD: 3.05

Matthiä et al. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data. *LSSR*, in press 2017







## **Dose rates- particle per particle**



- Neutrons and protons contribute with more than 50%
- MCNP6: no neutron dose, energy deposition through secondary protons
- MCNP6: low e+,-, high  $\mu$ ,  $\pi$ ;



## **Comparison of calculated and measured dose rates**

## black: first comparison, first 200 sol on Marsred: workshop results: 15 Nov 2015 - 15 Jan 2016

**NOTE:** Values in black parenthesis are the derived quality factors for a restricted zenith angle  $\theta$ <30°.

|                                    | MSL-RAD                          | GEANT4              | PHITS               | OLTARIS2013 | HZETRN/<br>OLTARIS | MCNP6 |
|------------------------------------|----------------------------------|---------------------|---------------------|-------------|--------------------|-------|
| absorbed<br>dose rate<br>[mGy/d]   | 0.21±0.04<br>0.23±0.01<br>(+10%) | 0.19<br>0.21 (+11%) | 0.20<br>0.25 (+25%) | 0.16        | 0.18<br>0.17 (-6%) | 0.31* |
| dose<br>equivalent<br>rate [mSv/d] | 0.64±0.12<br>0.61±0.12<br>(-5%)  | 0.52<br>0.57 (+10%) | 0.60<br>0.69 (+15%) | 0.52        | 0.54<br>0.54 (±0%) | 0.47* |
| Quality<br>factor                  | 3.05±0.26<br>2.62±0.14<br>(-14%) | 2.7<br>2.8          | 3.0<br>2.8          | 3.2         | 3.0<br>3.1         | 1.5*  |

\*revised values in Ratliff et al. (2017): 370  $\mu$ Gy/, 996  $\mu$ Sv/d, Q=2.7



# 3. Development of a parameterized radiation model for the Martian atmosphere



increasing atmospheric shielding

Based on pre-calculated tables for GCR primaries parameterized in solar activity and atmospheric shielding



## **Development of a parameterized radiation model**

- Calculate dose rate vs depth for GCR (Z=1-28) for 3 solar modulations (low, medium and high activity)
- Calculate dose rate vs depth for GCR (H, He) for several solar modulation
- Use ratio to scale the result of GCR (H, He)
- Dose rate in Si, dose rate in tissue, dose equivalent rate



## **Development of a parameterized radiation model**

- decrease of dose rates with depth (low solar activity)
- constant dose rates with depth (higher solar activity)
- surface effect increase of dose rates





## Development of a parameterized radiation model Dose rate at the Martian surface (22 g/cm<sup>2</sup>)



• GCR intensity based on Neutron Monitor data!



## Dose rate at the Martian surface (22 g/cm<sup>2</sup>): 2014/2015



GCR intensity based on Neutron Monitor data!



## Dose rate at the Martian surface (22 g/cm<sup>2</sup>): 2014/2015





## SEP on 10 Sep 2014, flare at N16W06



## Summary

- Output of DLR and BO-10/BO-14 model similar (<5%); differences in dose rates ≤ 5%
- Reasonable agreement between different transport models for many particles but severe differences for others
- Calculated total dose rates are compatible with measurements, but in some cases large discrepancies in the contribution of individual particle types
- Promising results for the parameterized model for dose rate in Si and tissue (long term trends)
- Short term behavior not nicely reproduced What could be used instead of NM data for the primary GCR intensity...?



## Future work

- Continue model inter-comparison and validation applying the detector geometry
- Investigate possibilities to describe the primary GCR intensity at Mars to model the short term variations
- Investigate the discrepancies starting at around July 2015 between the parameterized model and RAD E dose rate
- Implementation of organ dose rates and solar particle events in the surface model

