Comparison of Silicon-Based Detectors 22nd Workshop for Radiation Monitoring on ISS

2017-09-06

R. Rios, Ph.D.

Space Radiation Analysis Group NASA

Introduction

Introduction

•00

Purpose

- → Well-established history and pedigree of Silicon-based detectors on ISS, e.g., ALTEA, DB-8, DOSTEL, ISS-RAD, & REM.
- → In this talk, we will take a quick look at data from co-located instruments:
 - DOSTEL and REM: spanning multiple years in Columbus.
 - o Focusing on environment categorized dosimetry and energy loss.
 - \odot RAD and REM: during the first \sim 10 months of RAD's deployment in Destiny.
 - o Focusing on environment categorized dosimetry.

Environment Definitions

Introduction

0.00

There are many ways of categorizing GCR and the trapped/SAA environments; these definitions describe the scale and shape of the particle flux in each environment and affect spectral shapes.

Generalizing, LEO environment definitions fall into two categories:

- 1. Instrument-specific:
 - Typically provides a "purer" SAA measurement; shielding-modulated SAA environment is usually added into GCR.
 - o Dose rate thresholds; count-rate thresholds.
- 2. Model-based:
 - Selection is arbitrary, but is typically used to provide a "purer" GCR measurement; transition from GCR to SAA is either added into the SAA or kept as separate.
 - o Magnetic field intensity & L-shell; trapped proton model contributions at a location.

In the following comparisons, we will use multiple definitions.

Daily Dosimetry

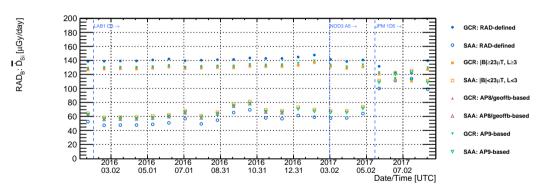


Figure 1: Average daily GCR/SAA dose rates in silicon per Bartel Rotation in RAD $_{\rm B}$. Detector locations are indicated by annotated vertical lines. Only days for which there is more than 95% live time for [2016-02-01, 2017-08-07) are used in the calculations.

Detector Location

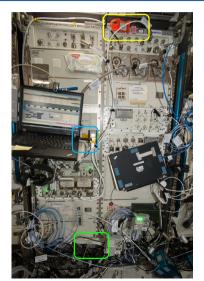


Figure 2: The Passive Detector Packages (PDP) from the DOSIS 3D project and the NASA RAM detectors (yellow); the NASA REM detector in the front of the EPM Rack (blue); the DOSIS-MAIN-BOX beneath the EPM rack (green) with three green status LEDs. (Image, caption courtesy T. Berger, DLR)

DOSTEL (DOSimetry TELescope)

Figure 3: The DOSIS-MAIN-BOX (blue box) mounted beneath the EPM rack in Columbus. Shown is also the viewing direction of the DOSTEL-1 (X) and the DOSTEL-2 (Y) instruments. [1] (Source: NASA/ESA)

- → Each DOSTEL houses two passivated implanted planar silicon (PIPS) detectors (D-1 and D-2). [1]
 - \odot 315 μ m thick, arranged 15 mm apart.
 - Active area of 6.93 cm².
 - Opening angle: 120°.
 - ⊙ Geometry factor: 824 mm²·sr.
 - \odot E_{Δ} range: 0.07 165 MeV.

REM (Radiation Environment Monitor)

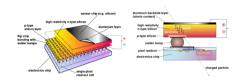


Figure 4: Medipix chip and Timepix assembly. (Source: CERN/Medipix.)

Figure 5: Radiation Environment Monitor.

- → Hybrid silicon pixel detector utilizing Medipix/Timepix technology (CERN).
- \rightarrow 256×256 pixels, each with a 55µm pitch (1.982cm²).
 - \odot REM $_{\rm D03}^{1007}$: 300 μm thick.
 - \odot REM $_{\rm J02}^{5001}$: 500 μm thick.
 - \odot E_{Δ , pixel} range¹: 5 800 keV.
- \rightarrow Opening angle: 4π .
- Nominally run in ToT (time over threshold) mode; acquisition time adjusted based on pixel occupancy and trending.

¹0.005 - 2 MeV per pixel with advanced calibration.

Analysis Overview

- → All daily dosimetry data and energy loss spectra masked for:
 - o days with less than 80ks of data:
 - days in which the dose in the SAA for REM varies by more than a factor of 1.4, for which we assume the SSC (and/or REM) was temporarily moved away from the nominal configuration.
- → Raw frame data from REMs are collected on the SSCs, down-linked, and analyzed on the ground.
 - Trivial to analyze frame/cluster data to generate products that are similar to other instruments
 - For this comparison, REM dosimetric and cluster observables integrated into 100-/20-s "bins" with start/stop times identical to DOSTEL's.

Environment Definitions

For a more direct comparison, GCR/SAA are categorized differently.

Dosimetry:

- → Magnetic field and L-shell
 - GCR: $|B| > 23 \mu T$, L> 3
 - ⊚ SAA: $|B| < 23\mu T$, L < 3
- → Note: Magnetic field calculated with IGRF12.
 - Geomagnetic field model modulates in time.

Energy loss:

GCR/SAA categorization is performed using DOSTEL's count rate threshold (30Hz) to switch between the so-called GCR mode and SAA modes.

Summary

→ Specifically, the start and stop time of each mode is used to artificially "bin" REM₁₀₂ data.

GCR Definition with B/L

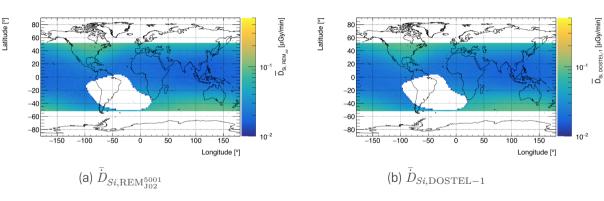


Figure 6: Average dose rate in the GCR region using data from [2013-11-10, 2016-02-09). GCR is defined as $|B| \ge 23 \mu T$, $L \ge 3$.

SAA Definition with B/L

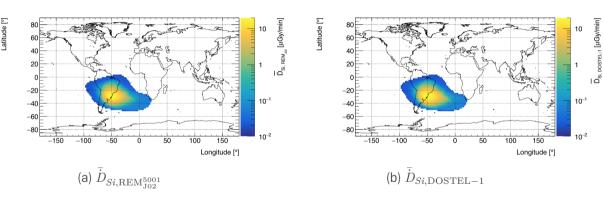


Figure 7: Average dose rate in the SAA region using data from [2013-11-10, 2016-02-09). The SAA is defined as $|B| < 23\mu T$, L < 3.

Total Combined Environment

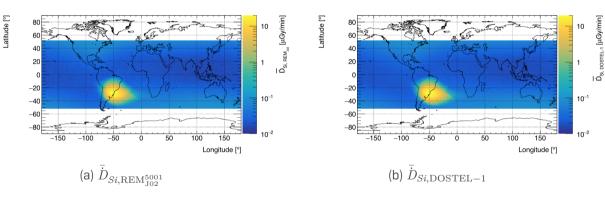


Figure 8: Average dose rate in LEO using data from [2013-11-10, 2016-02-09).

Rate Maps

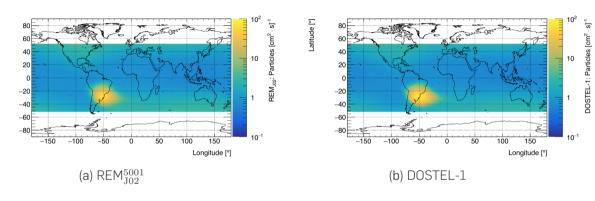


Figure 9: Event rates in DOSTEL-1 and REM $_{
m J02}^{5001}$ as a function of trajectory while co-located in Columbus for [2013-11-10, 2016-02-09).

An Example Day

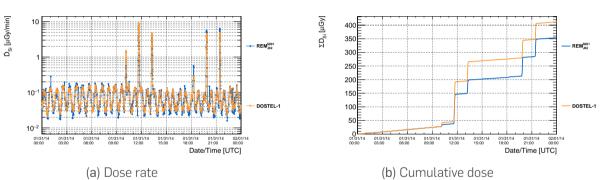


Figure 10: Dose rate in silicon per interval in REM $_{\rm J02}^{5001}$ and DOSTEL-1 covering [2014-01-31, 2014-02-01).

Daily Dose

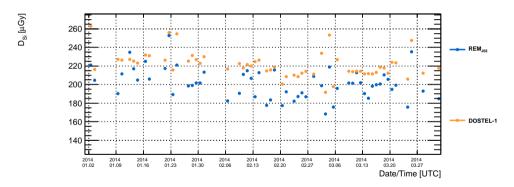


Figure 11: Daily dose in silicon for DOSTEL-1 and REM $_{
m J02}^{
m 5001}$ for [2014-01-01, 2014-04-01).

Daily Dose in GCR/SAA

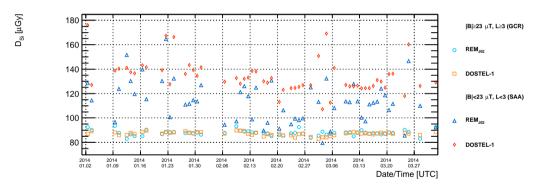


Figure 12: Daily dose in GCR ($|B| \ge 23\mu\text{T}$, $L \ge 3$) and the SAA ($|B| < 23\mu\text{T}$, L < 3) in silicon for DOSTEL-1 and REM $_{102}^{5001}$ for [2014-01-01, 2014-04-01).

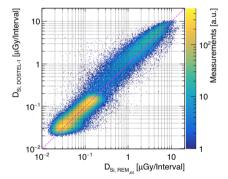


Figure 13: Dose rate in DOSTEL-1 versus REM_{102}^{5001} in time for each measurement in [2013-11-10, 2016-02-09].

 \rightarrow In GCR, REM₁₀₂⁵⁰⁰¹ and DOSTEL-1 are very close to each other; quite some spread in the SAA though.

Summary

- → Daily dose ratio for REM_{J02} /DOSTEL-1:
 - \circ GCR: $\mu = 1.01, \sigma = 0.02$
 - \circ SAA: $\mu = 0.86$, $\sigma = 0.10$

Summary

Energy Loss

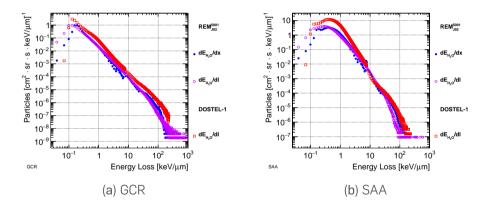


Figure 14: Energy loss in water for DOSTEL-1 (DOSIS3D) and REM₁₀₃⁵⁰⁰¹ for [2013-11-10, 2016-02-09). Note that DOSTEL-1's GCR/SAA modes and binning has been applied to REM_{102}^{5001} data. The differences in spectra are undergoing further analysis.

Introduction

Table 1: <Q> for DOSIS-3D, DOSTEL-1, and REM $_{
m J02}^{5001}$ in the GCR and SAA environments.

Detector	<q>_{GCR}</q>	<q>_{SAA}</q>	Energy Loss Type	Notes
DOSIS-3D	3.13	1.20	$dE_{\Delta,\mathrm{H}_2\mathrm{O}}/dl$	[1]
$REM_{\mathrm{J}02}^{5001}$	2.49	1.32	$dE_{\Delta, H_2O}/dx$	
	1.93	1.22	$dE_{\Delta,\mathrm{H}_2\mathrm{O}}/dl$	

Observations

Trending in the GCR environment (identified with |B|/L) is incredibly stable in DOSTEL-1 and REM $_{
m J02}^{5001}$.

- → The agreement for daily dose in GCR is stellar, within 2%.
- \rightarrow Fluctuations in the daily dose in trapped/SAA are within 14 \pm 10%, considerably small given the fact that these detectors are not truly co-located.

The differences in the energy loss spectra are substantially larger than those observed in dosimetry and are currently under analysis.

- $\rightarrow \sim 5 \times$ higher in DOSTEL-1 than REM_{J02}⁵⁰⁰¹ for GCR; $\sim 6 \times$ in the SAA.
- ightarrow Comparisons between IV-TEPC/REM $_{
 m J02}^{5001}$ and RAD/REM $_{
 m D03}^{1007}$ (c.f C. Zeitlin's talk) show differences that are on the order of a few percent.

RAD & REM

•00000000

Detector Locations

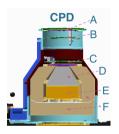

Introduction

Figure 15: RAD at LAB1 03.

Figure 16: REM_{D03}^{1007} , in the orange box, on SSC9.

→ Here, we will only focus on the CPD in ISS-RAD (legacy design from MSL-RAD), specifically the B sub-detector.

Summary

 \odot E_{Δ} range: 0.06 - 500 MeV.

Figure 17: Charged Particle Detector (CPD).

9		\ /		
Detector	Material	Туре	Purpose	
A, B ² , C	Si, 300 μm	Solid State Detector	Charged particle spectroscopy.	
D	BGO ³	Scintillating calorimeter	Energy resolving detector.	
E^2	EJ260XL Plastic Scintillator		High-energy particle $+ n^0$ measurements.	
F	LUZUUNL	l tastic scirtittator	Anti-coincidence	

RAD & RFM

00000000

²Provides charged particle dosimetry.

³Bismuth Germanium Oxide.

Environment Definitions

For the RAD/REM dosimetry comparison, we only look at the first 10 months of RAD's deployment in the US Lab; GCR/SAA categorization is performed using geomagnetic field intensity and McIlwain L-Shell.

RAD & RFM

- \rightarrow GCR: $|B| \ge 23 \mu T$, $L \ge 3$
- \rightarrow SAA: |B|< 23μ T, L< 3

Comments:

- → |B| and L are calculated for every second of ISS trajectory and mapped back to instrument data during data processing.
 - \odot Takes \sim 1s to calculate a single trajectory point, i.e., latitude, longitude, altitude, B, and L; this is brute-force parallelized and run daily on a cluster through cron.

Analysis Overview

- \rightarrow For REM_{D03}, raw frame/cluster data analyzed for the world maps; dose is integrated over all frames in a minute (normalized to the total acquisition time) and then integrated in each environment per day.
- → All daily dosimetry data masked for days with less than 95% live time.

Dosimetry Maps

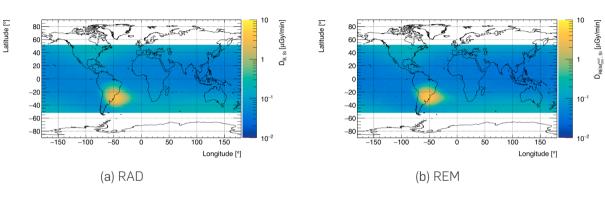


Figure 18: Dose rate in silicon for RAD $_{\rm B}$ and REM $_{\rm D03}^{1007}$ as function of trajectory while co-located in the US Lab for [2016-02-01, 2017-01-01).

Rate Maps

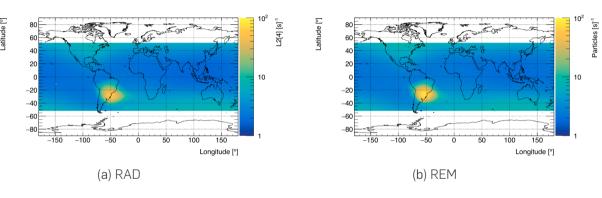


Figure 19: Event rates in RAD $_{\rm B}$ and REM $_{\rm D03}^{1007}$ as function of trajectory while co-located in the US Lab for [2016-02-01, 2017-01-01).

Daily Dosimetry: GCR/SAA

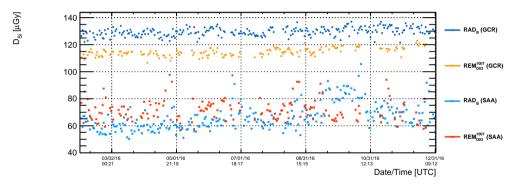


Figure 20: Daily dose for GCR and trapped/SAA in silicon for RAD $_{\rm B}$ and REM $_{\rm D03}^{1007}$ while co-located in the US Lab for [2016-02-01, 2017-01-01). Only days for which there is more than 95% live time are shown.

Dosimetry Comparisons

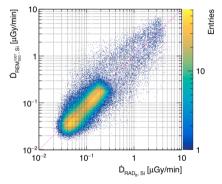


Figure 21: Dose rate in REM_{D02}¹⁰⁰⁷ versus RAD_B in time.

 \rightarrow RAD_B normally $\{_{lower}^{higher}\}$ than REM_{D03}^{1007} at $\{_{high}^{low}\}$ doses $\{_{SAA}^{GCR}\}$.

Summary

- Clearly seen in the daily dose.
- \rightarrow Daily dose ratio for RAD_B/REM_{D03}.
 - \circ GCR: $\mu = 1.13, \sigma = 0.03$
 - \circ SAA: $\mu = 0.92, \sigma = 0.15$

Observations

The trending observed in RAD_B and REM $_{D03}^{1007}$ is characteristic of shielding differences. REM_{DO3}^{1007} is mounted to a SSC and appears to be situated in a place which is less shielded than LAB1 03.

- → Thinner shielding results in lower GCR dose rates and higher trapped/SAA dose rates; very thin locations result in substantially higher dose rates through the trapped/SAA environment.
- → Thicker shielding generates more secondaries in GCR and produces higher dose rates (relative to a less shielded area) while also bringing the trapped/SAA dose rates down.
 - Trapped/SAA dose rates decrease faster than the increase in GCR dose rates.

Remarks

In looking over multiple years of data from significantly different silicon-based detectors, we see pretty good agreement in the dosimetry; more analysis and interpretations needed on the energy loss spectra.

- ightarrow Several years of dosimetric comparisons between DOSTEL-1 and REM $_{
 m J02}^{5001}$ show that daily doses are on average within:
 - \odot ~2% for GCR; ~14% for the trapped/SAA environment.
- \rightarrow Similarly, for \sim 10 months of RAD_B and REM_{D03}¹⁰⁰⁷ data:
 - \odot On average within \sim 13% for GCR; \sim 8% for the trapped/SAA environment.
- → Localized shielding drive most of the disagreement between the daily doses.
 - o Temporary SSC/REM relocations also a nuisance parameter.

Acknowledgements

Thanks to:

- → T. Berger, D. Matthiä, & S. Burmeister for discussions and data from DOSTEL/DOSIS-3D.
- → N. Stoffle for discussions and images on the ISS CAD models and REM.
- → C. Zeitlin for discussions on RAD.
- → X. Xu & M. Clowdsley for generating/providing the GCR/SAA flags utilizing AP8/AP9.

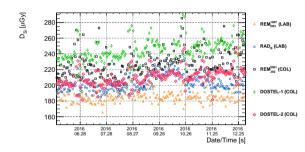
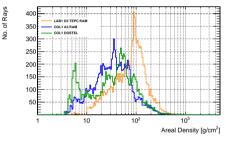
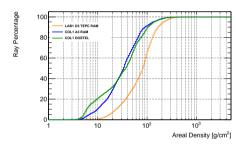


Figure 22: Daily dose in silicon for DOSTEL-1, DOSTEL-2, RAD_B, REM $_{\rm D03}^{1007}$, & REM $_{\rm J02}^{5001}$.

Additional Material


References


- T. Berger, S. Burmeister, D. Matthiä, et al.
- J. Space Weather Space Clim., 2017, vol. 7, p. A8

Additional Material

Instrument Specific

(b) Cumulative shielding distribution

Figure 23: Shielding distributions for the US Lab where the TEPC, RAM, & RAD detectors are nominally installed and locations in Columbus where the RAM and DOSTEL detectors are installed. (Images, courtesy of N. Stoffle)

Shielding Map

(Al-eq.)

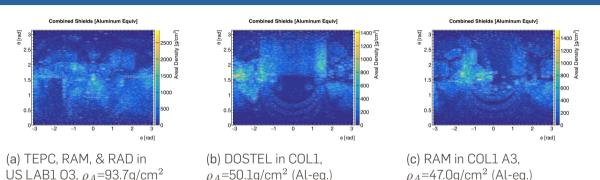


Figure 24: Shielding distributions around different detectors in the US Lab and Columbus. (Images, courtesy of N. Stoffle)

ISS Orientation

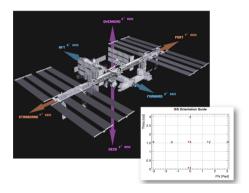


Figure 25: ISS orientation and coordinate system. (Image, courtesy of N. Stoffle)

Instrument Specific

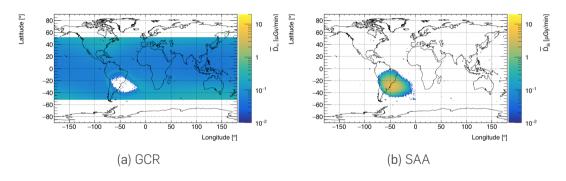


Figure 26: Average daily dose rate in silicon in RAD with instrument-specific GCR/SAA separation.

Summary

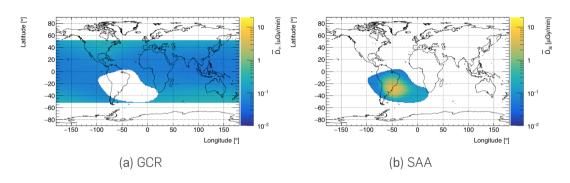


Figure 27: Average daily dose rate in silicon in RAD with GCR/SAA separation based on magnetic field intensity and L-shell.

AP8×geoffb

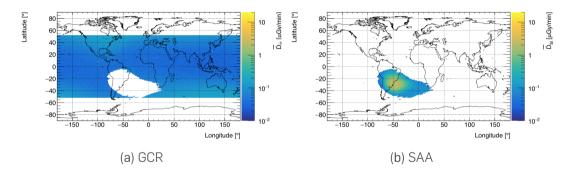


Figure 28: Average daily dose rate in silicon in RAD with GCR/SAA separation based on based on proton flux contributions in a given location using AP8×geoffb.

AP9

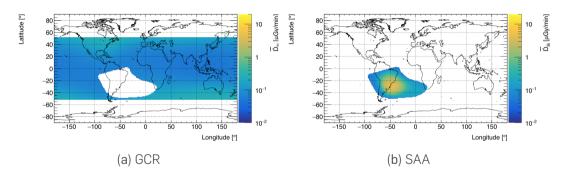


Figure 29: Average daily dose rate in silicon in RAD with GCR/SAA separation based on proton flux contributions in a given location using AP9.

Magnetic Field & L-Shell

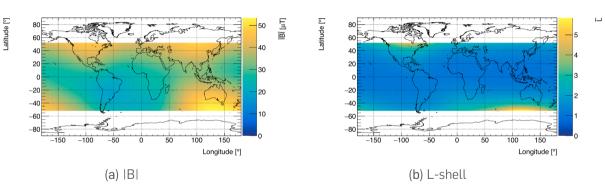


Figure 30: Average magnetic field intensity (IBI) and Mc-Ilwain L-shell as a function of orbital trajectory for [2013-11-10, 2016-02-09).

IBI & L Maps

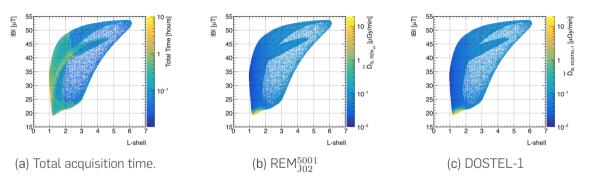


Figure 31: Total acquisition time and average dose rates for REM $_{\rm J02}^{5001}$ and DOSTEL-1 as a function of geomagnetic field intensity and L-shell for [2013-11-10, 2016-02-09).

\dot{D}_{Si} Comparison

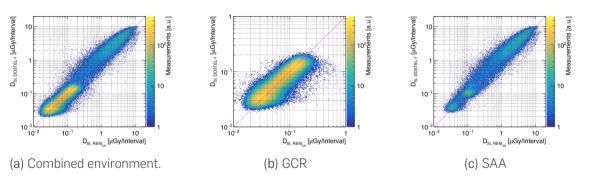


Figure 32: Dose rate in DOSTEL-1 versus REM $_{
m J02}^{5001}$ in time for each measurement in [2013-11-10, 2016-02-09); GCR and SAA are defined using the |B| & L definitions on page 10.

Daily Dose Ratios: DOSTEL/REM

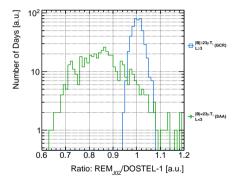


Figure 33: Ratio of daily dose in REM $_{
m J02}^{5001}$ to DOSTEL -1 in GCR and trapped/SAA for [2013-11-10, 2016-02-09).

Daily Dose from GCR

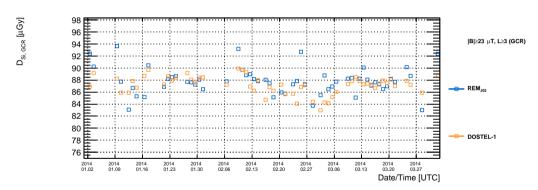


Figure 34: Daily dose from GCR ($|B| \ge 23\mu T$, $L \ge 3$) in silicon for [2014-01-01, 2014-04-01).

Daily Dose in the SAA

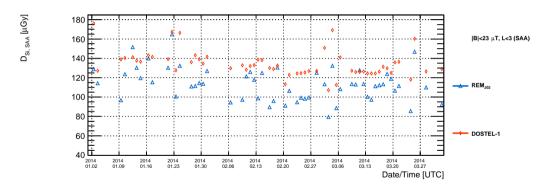


Figure 35: Daily dose in the SAA (IBI $< 23 \mu T$, L < 3) in silicon for [2014-01-01, 2014-04-01).

Chord Length Approximation

In pixelated detectors, such as Timepix, we calculate the projected track through the detector assuming that each particle fully penetrates.

→ Also have the ability to use the average chord length (or average path length).

The average chord length for an isotropic environment is simply:

$$4 \times \frac{Volume}{Surface\ Area}$$

For most planar detectors, this reduces to 2h, where h is the thickness of the active detector. Since the Timepix detectors can readout any incoming particle at all incident angles, we use the full solution, which includes each side.

- \rightarrow For REM $_{\rm J02}^{5001}$, whose thickness is 500 μ m, the average chord length is 933 μ m.
 - $\odot~$ Timepixes with a thickness of $300\mu m$ will have an average chord length of $575\mu m.$

REM: dE/dx v. dE/dl

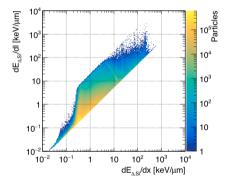


Figure 36: Comparison of dE/dx v. dE/dl in REM $_{
m J02}^{
m 5001}$ for the total combined LEO environment. Note that tracks require at least 4 pixels.