LIDAL Light Ion Detector for ALTEA

Workshops on Radiation Monitoring for the International Space Station

Turin, 5-7 September 2017

Alessandro Rizzo for LIDAL-ALTEA collaboration

Alessandro Rizzo

WRMISS 2017 - Turin, 5-7 September

LIDAL team

Livio Narici	Prir
Alessandro Rizzo	Syst
Piergiorgio Picozza	
Roberto Messi Cinzia De Donato Giuseppe Masciantonio Enzo Reali	Eleo UTC
Cristina Morone Eleonora Piersanti	Sim UT(
Marco Durante Francesco Tommasino Chiara La Tessa Christian Manea Marta Rovituso	Pro UTN
Eddie Semones Larry Pinsky Raphael Mastrangelo	ME NAS
Elisa Carruba	PD
Marino Crisconio	PM

Principal Investigator UTOV - INFN - ASI System Manager UTOV - INFN

Electronics UTOV - INFN

Simulations UTOV - INFN

Proton Beam tests (TIFPA) UTN - INFN

MEDIPIX NASA - UoH

PD Kaiser ItaliaPM ASI

Outline

- LIDAL-ALTEA System: how to study in detail the low-Z part of ion spectrum onboard the ISS
- Time of Flight measurements
- Toward LIDAL detector realization
- Test Beam @Trento ProtonTherapy Center: First Results
- What we have learned
- Toward LIDAL-ALTEA apparatus realization
- TimePix Integration

LIDAL-ALTEA System: how to study in detail the low-Z part of ion spectrum onboard the ISS

They account for the 99% particle of the spectrum (with He)

"Radiation survey in the International Space Station" - L. Narici et al. J. Space Weather Space Clim., 5, A37 (2015)

The risk is mitigated by the small quality factor Q for protons

ALTEA Kinetic Energy Window acceptance: 25-45 MeV

hardly measure GCR protons, mostly secondaries and albedo protons are detected by ALTEA

"Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment" -L. Narici et al. Scientific Reports 7, Article number: 1644

LIDAL detector

LIDAL is a detector designed to perform Time of Flight (ToF) measurements working paired to ALTEA detector

WRMISS 2017 - Turin, 5-7 September

Kinetic Energy [MeV/A]

481

Discrimination Power

Asked for TIME RESOLUTION better than 120 ps (here 80 ps)

LIDAL-ALTEA apparatus: expected discrimination power ALTEA acceptance windows have been included

- Distribution generated (accept/reject method) accordingly to CREME96 ones
- Deposited energy on silicon plane smeared with straggling

Time of Flight measurements

Risk assessment: ToF measurements and Bethe-Bloch parameters

WRMISS 2017 - Turin, 5-7 September

Toward LIDAL detector realization

LIDAL detector

How to reach a **TOF resolution** \leq **120 ps (\sigma)** ?

EJ-230 ELJEN technology

PROPERTIES	EJ-230
Light Output (% Anthracene)	64
Scintillation Efficiency (photons/1 MeV e ⁻)	9,700
Wavelength of Maximum Emission (nm)	391
Light Attenuation Length (cm)	120
Rise Time (ns)	0.5
Decay Time (ns)	1.5
Pulse Width, FWHM (ns)	1.3

EJ-228 AND EJ-230 EMISSION SPECTRUM

HAMAMATSU R988OU-110

Three different step have been done to define the final scintillator dimensions

	Fluka simulations	Trento Test	Final dimensions
dimensions	18.0x2.4x0.8/1.0/1.5 cm	9.0x2.4x0.8 cm	8.0x2.0x0.4 cm
	9.0x2.4x0.8/1.0/1.5 cm		
issues	 Number of collected photons at both sides Temporal structure of the signal (internal reflections) 	 Time Resolution and light collection 	 Solving Cross-Talk and FEE Saturation

LIDAL scintillators: Simulations

Simulated geometry:

Alessandro Rizzo

counts

WRMISS 2017 - Turin, 5-7 September

LIDAL scintillators: Trento Tests

- Aluminized Mylar (1 side)
- Black tape (1 wrap)

Optical Contact

•

• Aluminum tape (1 wrap)

LIDAL scintillators: Final

Designed to reduces the signals (cross-talk issue)

Test Beam @Trento ProtonTherapy Center: First Results

LIDAL prototype 0@TIFPA

$E_p = (70, 250)MeV$

Socket Assembly

Designed and Realized by Tor Vergata Mechanical Workshop

Optical Grease BC630

LIDAL electronics sketch

Pre-amp and Discriminator

Magenta = input pulse from scint. Cyan = LVDS output from NINO Green = MAX 4412 amplifier out

High Resolution Mode: 8 TDC **channels** with **res=25 ps**

Fully differential Input

Acquisition logic (2/2)

24

Average and difference

Time Of Flight

htof_dx

WRMISS 2017 - Turin, 5-7 September

QDC acquisition

Test on beam parameters: kinetic energy

28

Test on beam parameters: sigma of the beam

What we have learned

NINO behavior

Smaller Scintillators 4 mm thickness

Toward LIDAL-ALTEA apparatus realization

LIDAL-ALTEA first sketches

LDU (LIDAL Detector Unit)

- Scintillator Units
- NINO chip
- Trigger ALTEA circuit
- HV supply chips

LCU (LIDAL Collector Unit)

- HpTDC (sync issue)
- FPGA
- Power Supply distribution

TimePix integration

WRMISS 2017 - Turin, 5-7 September

TimePix Integration (2/2)

Thanks for your attention!

LIDAL project

Agenzia Spaziale Italiana

Project Manager: Marino Crisconio

Kayser Italia

Elisa Carrubba Antonio Bardi

University of Huston

Lawrence S Pinsky Raphael Mastrangelo

Francesco Tommasino Christian Manea Marta Rovituso

TIFPA Trento

ALTEA acceptance windows

Risk assessment in space VS the standard dosimetry

H_T in space (active detector) is a strictly physical quantity!

 $\frac{dE}{dx} \approx \rho N_e m_e c^2 r_e^2 \frac{Z Z^2}{A \beta^2} \left[ln \left(\frac{\gamma^2 \beta^2 W}{I^2} \right) + \frac{2\beta^2}{2\beta^2} + \delta - \frac{2C}{Z} \right]$ Important parameters for risk assessment in space

ToF Measurements

$$\Delta t = t_2 - t_1 \implies \beta = \frac{L}{c\Delta t} \implies T = \sqrt{\frac{m^2 c^4}{1 - \frac{L^2}{c^2 \Delta t^2}} - mc^2}$$

Time Difference for 2 particles with the same momentum and different masses (m₁ and m₂)

$$\Delta t = \frac{L}{cp} \left[\sqrt{p^2 + m_2^2 c^2} - \sqrt{p^2 + m_1^2 c^2} \right] \underset{m \ll p}{\longrightarrow} \frac{Lc}{2p^2} [m_2^2 - m_1^2]$$
Taylor expansion for $m_{1,2} \ll p$

Simulated ALTEA spectrum

