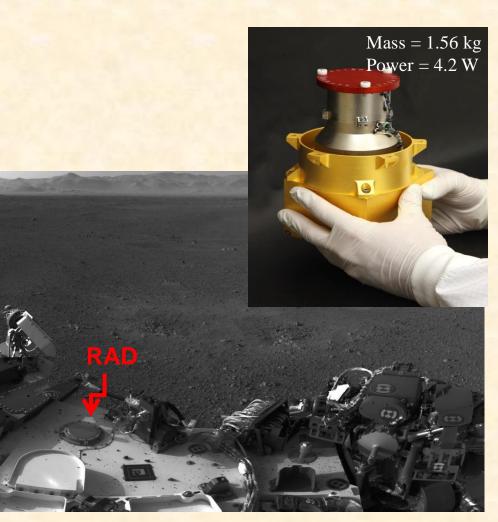


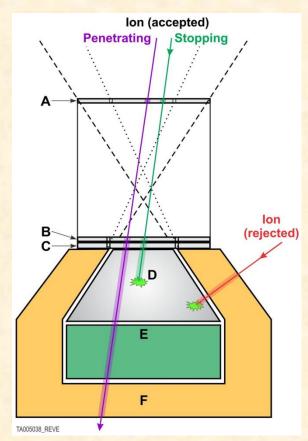
MSL/RAD Radiation Measurements on the Surface of Mars on the Way to Solar Maximum – New Findings & Updates

Bent Ehresmann, D. M. Hassler, C. Zeitlin and the MSL/RAD Team


> 27th WRMISS Workshop 5 September, 2024

The Radiation Assessment Detector (RAD)

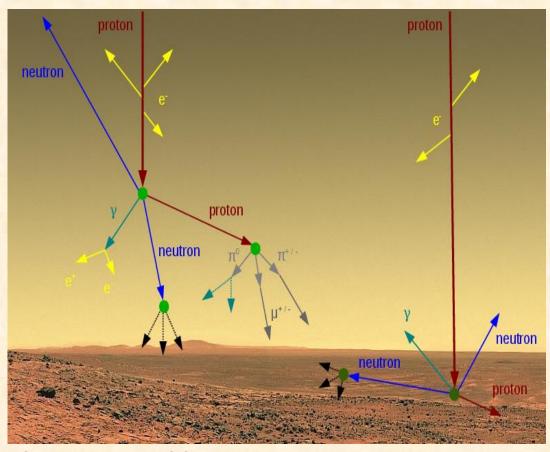
- RAD has been measuring the radiation environment on Mars on board NASA's Curiosity rover since August 2012, now spanning one whole solar cycle
- Knowledge of the radiation environment is crucial for the planning of *future human exploration of Mars*
- Exposure to radiation from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) remains one of the major risks for manned spacce flight



The Radiation Assessment Detector (RAD)

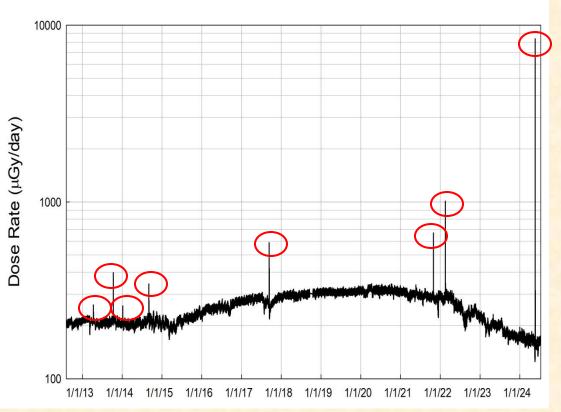
- The RAD Sensor Head consists of the following detectors
 - Three 300 µm thin Si detectors (A, B, C),
 - Csl scintillator (D),
 - Plastic (tissue-equivalent) scintillator (E),
 - Plastic scintillator (F) used for anticoincidence
- The coincidence of detectors A&B defines the acceptance angle for charged particle detection

 A&B FOV ~30° from zenith
- D & E are used to detect neutral particles (in anti-coincidence with detectors C & F)


Schematic of the RAD sensor head

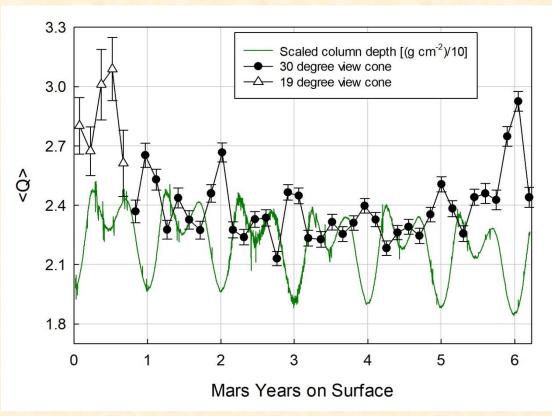
Radiation Environment on Mars

- Radiation environment on the surface of Mars differs greatly from Earth
- Mars lacks a global magnetic field and its atmosphere is very thin
- GCRs and high-energy <u>SEPs</u> can propagate deep into the atmosphere and soil and interact with the nuclei → intense radiation field of charged and neutral particles on the surface
- Protons need ~150 MeV to reach the surface!


Schematic of GCR protons propagating through the atmosphere and interacting with the nuclei of soil and atmosphere.

RAD Dose Rate Measurements over one Solar Cycle

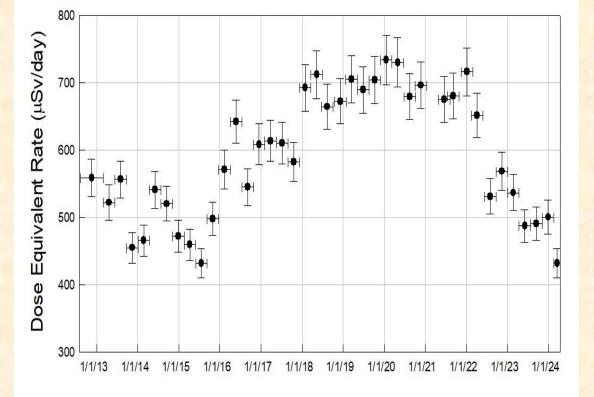
- Dose rates range from ~ *340 µGy/day* (solar min) to ~ *160 µGy/day* (cur-rent solar max)
- Previous solar max dose rates *deeper* than during end of last solar max (2012)
- Dose rates stem mainly from GCR...
- ... and vary with solar modulation & Martian pressure cycle
- RAD has detected *eight* SEP events so far (red circles)


RAD dose rate measurements in tissue-equivalent plastic scintillator E. The eight solar events detected by RAD are highlighted in red.

Radiation Quality Factor <Q>

- <Q> is a measure for the biological effectiveness of the radiation field
- ... calculated from RAD
 LET spectra and *Q(LET)*
- <Q> is affected by both solar modulation and Martian pressure
- Decrease in pressure leads to increase in <Q>
- Increase in solar modulation (solar max) leads to increase in <Q>
- <Q> ranges from ~ 2.1 (solar min) to 3.1 (solar max)

(Green) Vertical column depth of Martian atmosphere. (Black) Average <Q> of the Martian radiation field.



Dose Equivalent Rate H

Dose equivalent is the product of measured *absorbed dose x <Q>...*

- ... and provides a better insight into the radiation exposure relevant to astronaut health
- Dose equivalent rates highest during solar min (725 µSv/day)...
- During solar max: 425 -450 µSv/day

RAD dose equivalent rates calculated from RAD absorbed dose rate measurements and <Q> of the radiation field.

RAD Acknowledgments

RAD is supported by NASA (SMD/Heliophysics & HEOMD/AES) under JPL subcontract #1273039 to SwRI.

...and by DLR in Germany under contract with Christian-Albrechts-Universitat (CAU).

