ASTROBOTIC PEREGRINE 1 MISSION DLR M-42 DATA

UPDATE ON M-42 INSTRUMENT FAMILY

DLR M-42 Team

German Aerospace Center (DLR), DLR-ME & DLR-MUSC, Cologne, Germany

NOTE: All data preliminary and confidental

DLR-ME: Radiation Measurements in Space

36 km MARSBOx / E-MIST (*DLR M-42*)

420 km **RadMap** (*DLR M-42*)

MARSBOx: Berger et al. (2021) <u>https://doi.org/10.1002/essoar.10506355.1</u> Eu:CROPIS: Hauslage et al. (2018) <u>https://doi.org/10.1007/s12217-018-9654-1</u> RAMIS: Guo et al. (2023) <u>https://doi.org/10.1029/2023GL103069</u> RAMIS: Meier et al. (2023) <u>https://doi.org/10.1038/s41598-023-36190-5</u> RadMap: Losekamm et al. (2023) <u>https://doi.org/10.22323/1.444.0099</u>

250 km MAPHEUS (*DLR M-42*)

To the Moon and back **MARE** (*DLR M-42*)

600 km Eu:CROPIS (*DLR RAMIS*)

400.000 km Astrobotic

	M-42 Compact/Split
Energy Range (in Si)	0.06 - 20 MeV
Sensor thickness	300 µm
Sensitive Area	1.22 cm ²
Power Consumption	10.44 mW

M-42 Display

	M-42 Compact	M-42 Display
Energy Range (in Si)	0.06 - 20 MeV	0.06 - 43 MeV
Sensor thickness	300	μm
Sensitive Area	1.22	cm²
Power Consumption	11 mW	36 mW

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

DLR M-42 Detector Family

	M-42 Compact	M-42 EXT
Energy Range (in Si)	0.06 - 20 MeV	0.06 - 135 MeV
Sensor thickness	300 µm	
Sensitive Area	1.22 cm ²	
Power Consumption	11 mW	11 mW

<section-header>

	M-42 EXT	M-42 BIG
Energy Range (in Si)	0.06 - 135 MeV	
Sensor thickness	300 µm	320 µm
Sensitive Area	1.22 cm ²	7.84 cm ²
Power Consumption	11 mW	

	M-42 EXT	M-42 BIG
Energy Range (in Si)	0.06 - 135 MeV	0.06 - 250 MeV
Sensor thickness	300 µm	320 µm
Sensitive Area	1.22 cm ²	7.84 cm ²
Power Consumption	11 mW	

<section-header>

RAMIS

	M-42 EXT	M-42 BIG
Energy Range (in Si)	0.06 - 135 MeV	0.06 - 250 MeV
Sensor thickness	300 µm	320 µm
Sensitive Area	1.22 cm ²	7.84 cm ²
Power Consumption	11 mW	

<section-header>

RAMIS

	M-42 EXT	M-42 BIG
Energy Range (in Si)	0.06 - 135 MeV	0.06 - 250 MeV
Sensor thickness	300 µm	320 µm
Sensitive Area	1.22 cm ²	7.84 cm ²
Power Consumption	11 mW	500 mW

ASTROBOTIC PEREGRINE MISSION 1 Planned Flight Path

Planned Flight Path

DLR M-42 Radiation Detector

Technical data DLR M-42

- Silicon Detector
 - Area: 1.22 cm²
 - Thickness: 300 µm

Science Data

- Energy deposition spectra in 182 log-bins
- Energy range (E_{DEP} in Si: 0.08 20.77 MeV)
- Overflow bin at: 20.77 MeV
- Time resolution: 300 seconds

DLR M-42 Astrobotic FM

© DLR-ME

Berger, T. et al. (2019). The German Aerospace Center M-42 radiation detector - a new development for applications in mixed radiation fields. Review of Scientific Instruments, 90, 125115. https://doi.org/10.1063/1.5122301

NASA LETS + DLR M-42 (Deck D) radiation detectors

NASA LETS + DLR M-42 radiation detectors

United Launch Alliances (ULA) https://www.ulalaunch.com/missions/next-launch/vulcan-cert-1

Vulcan- Launch

• Launch:

- 2024-01-08 07:18:38
- M-42 Power On:
 - 2024-01-08 09:30:22 (shortly after Peregrine separation)

DLR M-42 Radiation Detector

M-42 Communication

- Commanding:
 - DLR-MUSC → Pittsburgh → Peregrine
- Data rate:
 - Free Space: 10 bits/second
 - Moon: 8 kbits/second
- First data packet received:
 - **2024-01-08 12:10:14**

DLR M-42 Mission OPS

DLR M-42: Housekeeping data (temperature)

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

Actual Flight Path

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

DLR M-42: Science data (count rates)

Count rate (cts/sec/cm²)

MESSAGES

20

 M-42 instrument sends out energy deposition spectra every 300 seconds to the Peregrine Payload OBC for downlink to Earth

Data: MESSAGES (M-42 sends data every 300 seconds)

DLR M-42: Science data (count rates)

Count rate (cts/sec/cm²)

- MESSAGES
 - M-42 instrument sends out energy deposition spectra every 300 seconds to the Peregrine Payload OBC for downlink to Earth
- DATA FLASH
 - M-42 stores measured data in the internal data flash
 - Stored data is downlinked to ground via relevant commanding from DLR-MUSC → Pittsburgh → Peregrine

 Data: MESSAGES (M-42 sends data every 300 seconds) and DF PAGES (M-42 is commanded to provide data from in-built memory)

DLR M-42: Summary 1111 Spectra = 5555 minutes of science data

Count rate (cts/sec/cm2)

- Outer electron belts (maximum):
 - 179 ± 0.7 cts/s/cm²
- Free space (GCR) (average):
 - 1.67 ± 0.07 cts/s/cm²

Dose rate (µGy/day) in Si

- Outer electron belts (maximum):
 - 8909 ± 257 µGy/day
- Free space (GCR) (average):
 - 158 ± 24 µGy/day
 - Extrapolated (overflow): ~173 µGy/day

ASTROBOTIC PEREGRINE 1: M-42 Data Belt crossing vs. free space

Spectra: Belts / GCR

ASTROBOTIC PEREGRINE 1: M-42 Data

Belt crossing vs. free space

Spectra: Belts - GCR

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

ASTROBOTIC PEREGRINE MISSION 1

DLR M-42: Summary 1111 Spectra = 5555 minutes of science data

Energy deposition spectra

- Variation of the energy deposition spectra as measured with the M-42 instrument over mission duration
 - Observed high peak in the lower energy deposition range (up to 1 MeV) for the first 1 ½ hours of the mission → Outer belt electrons
 - Nominal "stable" energy deposition spectra for the time spend in free ∽ space → Galactic Cosmic Radiation

© DLR-ME

10

10

10

10

10-4

n²·s·MeV)⁻

DLR M-42: Housekeeping data (temperature)

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

DLR M-42: Housekeeping data (temperature)

DLR M-42: Housekeeping data (temperature)

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

ASTROBOTIC PEREGRINE 1: M-42 Data Comparison with RAMIS-Data

RAMIS / Astrobotic

ASTROBOTIC PEREGRINE 1: M-42 Data Overflow Channel Extrapolation

RAMIS / Astrobotic

- Dose rate measured:
 - 159.4 ± 0.6 µGy/d
- Dose rate extrapolated:
 - 172.6 ± 3.7 µGy/d

ASTROBOTIC PEREGRINE 1: M-42 Data GEANT4 Simulation model

Simulation model

Simulated GCR spectrum

ASTROBOTIC PEREGRINE 1: M-42 Data Comparison with RAMIS-Data and Simulation model

RAMIS / Astrobotic

a) Comparison of RAMIS-Data with L>8 with Astrobotic data

b) Comparison of Simulation model with gathered data

ASTROBOTIC PEREGRINE 1: M-42 Data Comparison with RAMIS-Data and Simulation model

RAMIS / Astrobotic

33

Daily dose rate measured with CRaTER, RAMIS and M-42 Astrobotic

RAMIS: L >= 8 + CRaTER: D1&D2 / D3&D4 / D5&D6 Free space

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

RAMIS: L >= 8 + CRaTER: D1&D2 / D3&D4 / D5&D6 Free space

DLR M-42 Team / ASTROBOTIC Peregrine 1 / WRMISS 27, Boulder, USA - 4 September 2024

ASTROBOTIC PEREGRINE 1: M-42 Data Comparison with RAMIS-Data and Simulation model

RAMIS / Astrobotic

36

Daily dose rate measured with CRaTER, RAMIS and M-42 Astrobotic

Imprint

Topic:ASTROBOTIC PEREGRINE 1 DLR M-42WRMISS 27, Boulder, CO, USA

Date: 2024-09-04

DLR-Team: Thomas Berger, Bartos Przybyla, Joachim Aeckerlein, Karel Marsalek, Moritz Kasemann, Markus Rohde, Daniel Matthiä, Michael Wirtz, Maximilian Radenhäuser, Stephan Sous, Nico Maas, Cinzia Fantinati, Oliver Küchemann

Institutes: DLR-ME / DLR-MUSC

Image sources: © Astrobotic / DLR