## SpinSat

# A flexible payload system for studying the effects of radiation and variable gravity in space

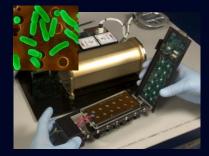


J. Miller J. Lee A. Ricco J. Bookbinder NASA-Ames Research Center

https://www.nasa.gov/ames-studies-current/spinsat

Arc-spinsat@mail.nasa.gov

### Motivation


## Current capabilities for studies of the effects of space radiation and reduced gravity are limited:

- Radiation: terrestrial accelerators are impractical for studying long-duration, low dose rate exposures; ISS orbit is substantially shielded from GCR; complex internal shielding adds to uncertainty in dose to payload; limited opportunities.
- Reduced gravity: available on ISS but limited in potential experiment configurations, and without simultaneous deep-space radiation exposure.

ISS does not meet needs for studying BLEO effects. Gateway and Commercial LEO Destinations facilities are still undefined and likely to offer limited access at high cost.

### Technology heritage: biological cubesat payloads

#### GeneSat-1 (3U)



### 2006

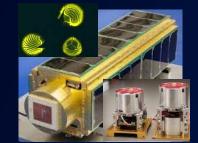
- E. coli (bacterium)
- Microgravity effects on gene expression
- 12-well fluidic card
- LED-excited fluorescence for GFP expression, + LED light scattering for cell population
- 1<sup>st</sup> fully automated self-contained biological experiment on a cubesat

#### PharmaSat (3U)



### 2009

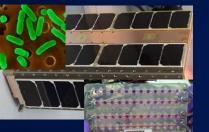
- S. cerevisiae (yeast)
- Microgravity effects on antifungal response
- 48-well fluidic card
- In-situ preparation of multiple drug dose levels from concentrate
- 3-color LED optical detection system
- alamarBlue indicator dye


#### **O/OREOS** (3U)



### 2010

- B. subtilis (bacterium)
- 1<sup>st</sup> demo of 2 distinct experiment payloads on one autonomous satellite
- Microgravity & LEO + radiation effects
- 3-LED optical detection: solar UVvis spectrometer
- 1<sup>st</sup> time dried organisms rehydrated in orbit: enables multitimepoint activation


#### SporeSat-1 (3U)



### 2014

- C. richardii (aquatic fern spores)
- Variable gravity effects on spore germination via calcium ion transport
- 1<sup>st</sup> time artificial gravity capabilities in cubesat, 0 - 2x g
- 1<sup>st</sup> micro-centrifuges as well as Lab-on-Chip electrochemical sensors in a cubesat
- Deployed by resupply mission en route to ISS

#### EcAMSat (6U)



2017

(uropathogenic

Microgravity effects

• 48-well fluidic card

detection: variable-

dose drug delivery

• 6U format for 50%

more solar power

deployed from ISS

• 1<sup>st</sup> bio cubesat

bacterium)

on antibiotic

3-LED optical

response

• E. coli

#### **BioSentinel** (6U)



### 2022

- S. cerevisiae (yeast)
- Microgravity & deepspace radiation effects on DNA damage/repair
- 1<sup>st</sup> use of monolithic multilevel fused manifolds
- 18 x 16-well cards: 288 samples
- 1<sup>st</sup> deep-space bio cubesat: 2° payload on Artemis-1
- Onboard radiation spectrometer (LET)

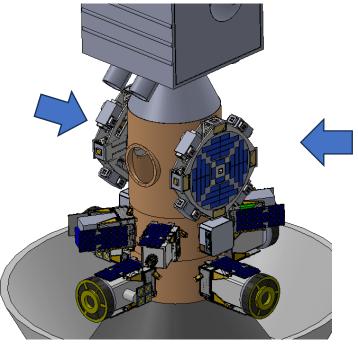
### SpinSat Platform

A standardized NASA Class D (high risk tolerance, medium to low complexity) "plug-and-play" platform utilizing standard open-source form factors and interface.

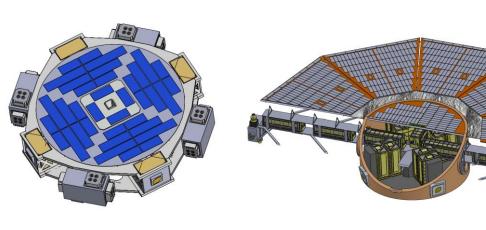
- Provides power, comms, avionics--PIs can focus on experimentspecific hardware.
- Offers increased flight opportunities for experiments studying combined effects of deep space, lunar or Mars radiation environments and gravity.

### SpinSat Platform

- Low cost per experiment
- Frequent access to space
- Duration: weeks to > 1 yr
- Launch vehicle and orbit agnostic
- Many experiments can be hosted on a single platform
- Possibility for reduced gravity and 1g control simultaneously
- Base configuration uses CubeSat form factor and interface. (Other configurations not precluded.)
- Easy integration and payload access
- Potential for late loading


### SpinSat Platform

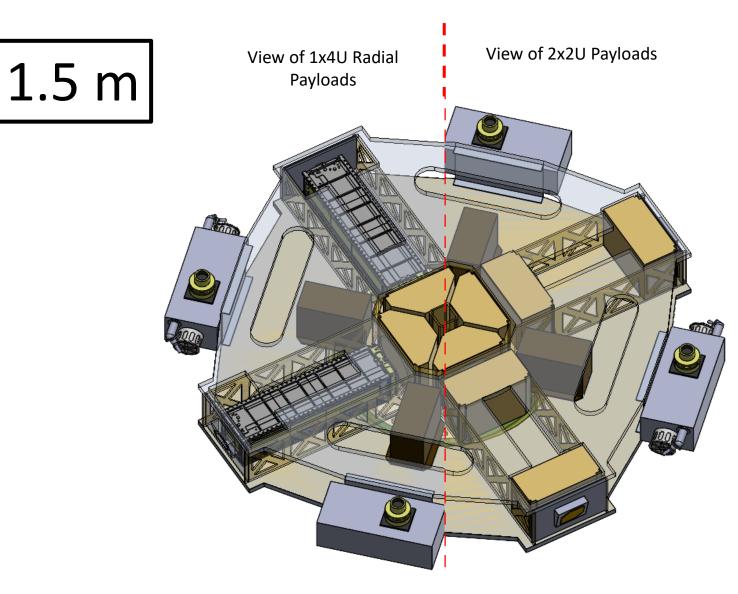
### **Two SpinSat configurations**


1.5m ESPA\* port mounted (x2 shown)

#### 4.5m ESPA\* In-line stack

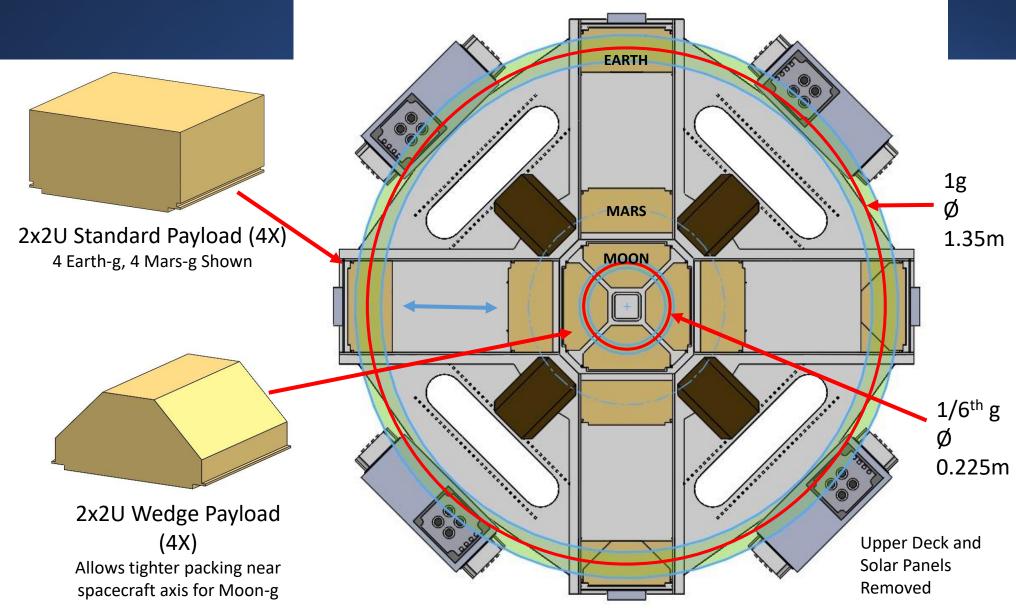
Ø




\*EELV Secondary Payload Adapter



Can host > 48"U" worth of experiments


Can host ~300"U" worth of experiments

experiments can be mounted axially, radially, or azimuthally w.r.t. the spin axis for both approaches



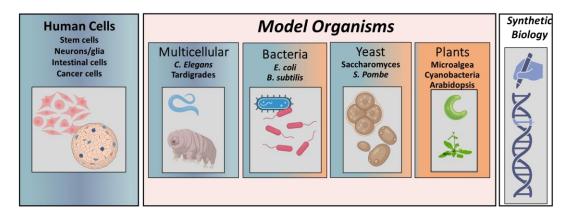
Top View – Solar Arrays Removed

### 1/6g - 1g simulation



8

### **Science Opportunities**



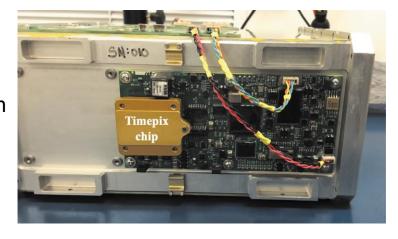



Observables: DNA damage | Protein damage | Cell membrane damage | Mitochondrial damage | Germination | Growth | Tropisms | 2° metabolite production

### **Potential Experiment Concepts**

- Biological and Astrobiological Sciences
  - Microbial survival in non-terrestrial conditions (high-fidelity simulation of Mars, lunar, or transit conditions)
  - Prebiotic chemistry in relevant environmental conditions
  - Model organisms: response to radiation and gravity conditions relevant to crewed exploration of deep space
  - Evolutionary studies: communities/microbiomes; models
  - Testing countermeasures to deep space stressors
- Planetary Sciences
  - Behavior of regolith at lunar gravity
  - Behavior of small-scale particle interactions during early growth of small bodies (regime where electrostatics is more important that gravity)
- Physical Sciences
  - Flame propagation studies at Lunar & Mars gravities
  - Heliophysics applications of electric field and in-situ magnetometer measurements



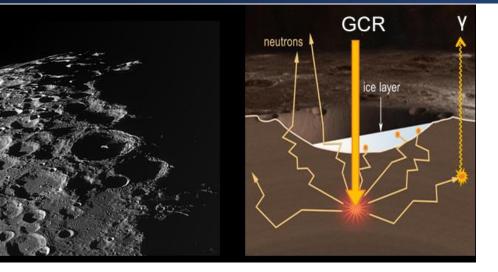

### **Radiation instruments**

Cubesat "U" form factor allows room for dedicated active dosimetry for individual payloads as well as vehicle dosimetry.

Example: charged particle + neutron measurement suite

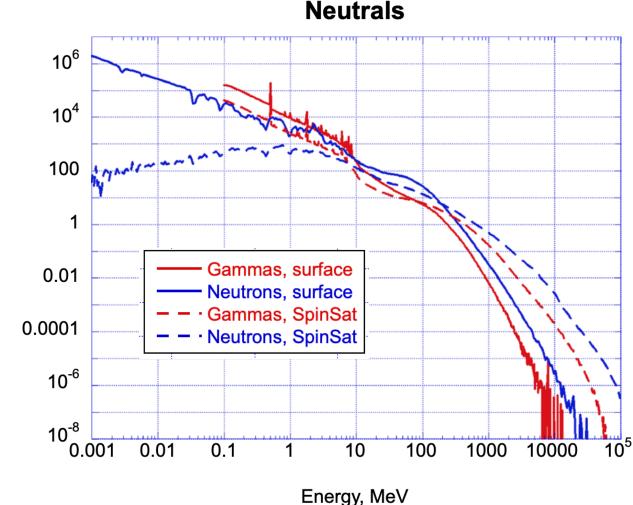
LET spectrometer (BioSentinel, LEIA)

LET (in H<sub>2</sub>O) = 0.1 - 300 keV/μm




Mini-FND (LEIA)

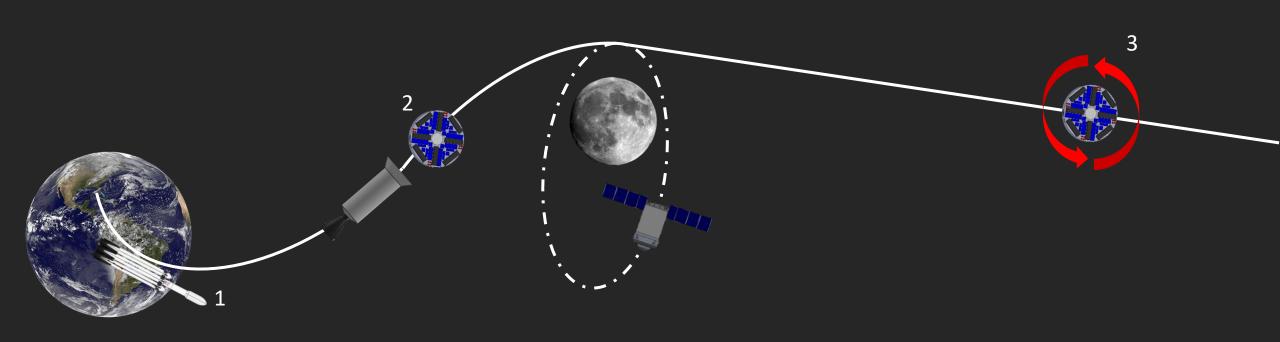



- Neutron energy range: 0.5 to 10 MeV
- 1.3 kg
- 1650 cm<sup>3</sup> (10.5 x 10.5 x 15.0 cm)

### Simulation of the Lunar Radiation Environment



- Fast neutrons cause direct cellular damage and also produce ionizing radiation
- SpinSat can simulate the lunar neutron environment by including regolith in the payload.
- Right: GEANT4 simulation\* of a 3x1U block of 2 g-cm<sup>-2</sup> ferroan anorthosite (FAN) bombarded isotropically by GCR; tabulated all particles except neutrinos coming out of the block.






\* M. Looper, Aerospace Corp.

- 1. Launch on CLPS/DLS rideshare, on escape disposing stage
- 2. Separate at appropriate bus-stop
- 3. Once at appropriate environment, spin up and start science

### Con-Ops: Earth Trailing



- 1. Launch on CLPS/DLS rideshare with TLI or BLT trajectory
- 2. Separate prior to apogee TCM
- 3. At apogee, burn to raise perigee above VAB
- 4. Apogee lower maneuver
- 5. Spin up and start science

4

### Con-Ops: High Earth Elliptical

5

2

3



### Design process

- Architecture study and trades completed by Ames Mission Design Center
- Initial funding provided by Earth-Independent Operations (EIO), led by the Mars Campaign Office (MCO)
- Design in progress for LEO Demo flight and Deep Space Missions

### Key Studies underway for LEO & Deep Space

- Thermal Analysis, Comms, Dynamic Balancing
- Extendable Solar Panels, Radiation, Regolith Simulant Requirements, Rad Sensor Requirements, Sensor Placement

**Operational demo flight (LEO) targeted for 2028\*; Annual launches thereafter.** 

\*pending funding



### **Science community engagement**

- Requirements Workshop held at Ames, 3/8/24
  - Broad science and engineering participation (~75 people)
- Request For Information issued on SAM.gov
  - Seeking input from the space sciences community and <u>instrument developers</u> for future missions

### https://www.nasa.gov/spinsat-rfi/

## Thank you\*



\*SwRI (Don, Bent) Günther

> https://www.nasa.gov/ames-studies-current/spinsat/ Arc-spinsat@mail.nasa.gov

### Status

#### **Design process**

- Architecture study and trades completed by Ames Mission Design Center
- Design in progress for LEO Demo flight and Deep Space Missions
  - Agnostic STM developed
  - MTM partially developed
  - Requirements traced to Level 1 Requirements
  - Initial MELs generated for LEO Mission with Deep Space Exception Tracked
  - 1.5m ESPA port mount; 4.5m ESPA stack mount
- Key Studies underway for LEO & Deep Space
  - 3D s/c printing, Thermal Analysis, Comms, Dynamic Balancing, Extendable Solar Panels,
  - Radiation, Regolith Simulant Requirements, Rad Sensor Requirements, Sensor Placement

### Science community engagement

- Requirements Workshop held at Ames, 3/8/24
  - Broad science and engineering participation (~75 people)

#### Request For Information issued on SAM.gov

- Seeking input from scientists and instrument developers for future missions
- We want to hear from you!

#### https://www.nasa.gov/spinsat-rfi/

#### **Notional launch schedule**

Operational demo flight (LEO) targeted for 2028 Annual launches thereafter



#### Architecture Study & Trades Completed by NASA-Ames Mission Design Center

• No significant technical challenges identified

#### **Requirements Workshop and RFI**

- Broad science and engineering participation (~75 people)
- RFI issued to solicit requirements from a wider range of PIs on SAM.gov

### LEO Demo & Deep Space Mission & SC Design in Progress

- Agnostic STM developed
- MTM is partially developed
- Requirements traced to Level 1 Requirements
- Initial MELs generated for LEO Mission with Deep Space Exception Tracked
- 1.5m ESPA port mount
- 4.5m ESPA stack mount

### Key Studies Underway for LEO & Deep Space

- Thermal Analysis, Comms, Dynamic Balancing, Extendable Solar Panels,
- Radiation, Regolith Simulant Requirements, Rad Sensor Requirements, Sensor Placement