

DOSTEL measurements as part of DOSIS/DOSIS3D: An update

Sönke Burmeister¹, Thomas Berger² and Daniel Matthiä² for the DOSIS3D team

¹Institute of Experimental and Applied Physics, CAU, Kiel, Germany; ²German Aerospace Center, DLR, Institute of Aerospace Medicine, Cologne, Germany

DOSIS / DOSIS 3D

Agency	Name of the detectors	Quantity	Position on ISS	
ESA	PDP	10 + 1	Columbus (red rectangle)	
NASA	RAMs	24	All over the ISS (yellow rectangle)	
JAXA	PADLES	12	KIBO (blue rectangle)	
IDMD	SPD	6		
IBMP	Pille	10	Russian part of the 188 (green rectangle)	

Fig. 3: Passive detectors on the ISS. The RAMs, PADLES, SPD and Pille detectors are permanently on board of the ISS. The PDPs from ESA are not. To reach the scientific goals set by Dosis 3D the PDPs shall be re-introduced on Columbus.

DOSIS & DOSIS 3D: Scientific Goals

- The main objective of the **DOSIS & DOSIS 3D** experiment is the determination of the absorbed dose and dose equivalent using a variety of active and passive radiation detector devices distributed throughout the ISS.
- Monitor the radiation environment inside Columbus with active and passive radiation detectors (ESA) for the determination of the temporal and spatial dose distribution
- Combine data gathered by NASA, JAXA, IMBP and ESA into a 3D radiation map of the International Space Station

DOSIS & DOSIS 3D: Measuring since 2009

DOSIS Passive Detectors

11 passive detector packages (PDPs) distributed inside COLUMBUS

Remember talk by Thomas ...

1eap

DOSIS & DOSIS 3D: PDP + DOSTEL Positions

DOSIS Main Box

ieat

ISS020E033064

DOSIS Main Box

DOSTEL 1

DDPU – DOSTEL Data and Power Unit

2.97 cm

DOSTEL Design

The DOSTEL instruments consist of two Canberra PIPS (Passivated Implanted Planar Silicon) detectors, forming a particle telescope. The detectors have a thickness of 315 μ m and an actice area of 6.93 cm². A distance of 1.5 cm between the two detectors leads to an opening angle of 120°.

C A U **DOSIS-DOSTEL during the solar cycle**

- Data since 2009
- More than one (half) cycle (#24)
 - 2 solar minima (2009 und 2020)

 1 solar maximum (~2014)

Matthiä, D., Burmeister, S., Przybyla, B., Berger, T. (2023) Active radiation measurements over one solar cycle with two DOSTEL instruments in the Columbus laboratory of the International Space Station. *Life Sciences in Space Research* https://doi.org/10.1016/i.lssr.2023.04.002

ieap

A U Absorbed dose rate (µGy/day) in Si

Berger T, Matthiä D, Burmeister S, Zeitlin C, Rios R, Stoffle N, Schwadron NA, Spence HE, Hassler DM, Ehresmann B, Wimmer-Schweingruber RF, (2020) Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars. J. Space Weather Space Clim. 10:34

leap institut für operateitet und anstrante prose

https://doi.org/10.1051/swsc/2020028

12

2

С

Absorbed dose rate (µGy/day) in Si

Berger T, Matthiä D, Burmeister S, Zeitlin C, Rios R, Stoffle N, Schwadron NA, Spence HE, Hassler DM, Ehresmann B, Wimmer-Schweingruber RF, (2020) Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars. J. Space Weather Space Clim. 10:34

1eap

https://doi.org/10.1051/swsc/2020028

September 2023, S 26th WRMISS, 1 3

Rome, Italy

Dose and dose equivalent

(A) mGy/day

(B) mSv/day

Matthiä, D., Burmeister, S., Przybyla, B., Berger, T. (2023) Active radiation measurements over one solar cycle with two DOSTEL instruments in the Columbus laboratory of the International Space Station. *Life Sciences in Space Research* https://doi.org/10.1016/j.lssr.2 023.04.002

Cutoff (R_c) dependence of the dose rate

15

Extrapolation to Interplanetary Space

- Calculation of mean altitude
- Calculation of shadowing factor s
- Si dose to dose in H_2O : 1.23
 - $d_{H2O}^{interplanetary} = 1.23 \cdot d_{Si}^{ISS}$
 - $h=Q \cdot d$ quality factor 3.3 (*Kollhoff 2015*, $R_c=0-5$ GV)
 - 350μGy/d (2014-2015) to 570 and 580 μGy/d (2009/2020)
 - 1.2 mSv 1.9 mSv

Work done by Daniel Matthiä

27-day averages of the altitude (a) and corresponding shadow factors (b) and the resulting estimated dose rate in water and dose equivalent rate in **free space** (c).

16

Comparison with measurements

Berger T, Matthiä D, Burmeister S, Zeitlin C, Rios R, Stoffle N, Schwadron NA, Spence HE, Hassler DM, Ehresmann B, Wimmer-Schweingruber RF, (2020) Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars. J. Space Weather Space Clim. 10:34 https://doi.org/10.1051/swsc/2020028

Rome, Italy September 2023, S 26th WRMISS,

Conclusions

- monthly und orbital mean dose rate (H₂O): SAA: 60 μGy/d - 250 μGy/d, 80 μSv/d – 300 μSv/d GCR: 120 μGy/d – 160 μGy/d, 380 μSv/d – 490 μSv/d
- Dose rate estimation for interplanetary space (based on $R_c < 0.5 GV$ measurements and correction for shadowing effect by earth):
 - 350 μGy/d (2014-2015) to 570 and 580 μGy/d (2009/2020)
 - 1.2 mSv/d to 1.9 mSv/d
 - models, solar minimum:
 - Without neutrons: ~ 560 µGy/d or 1.3 mSv/d
 - Including neutrons: ~ 600 µGy/d or 1.9 mSv/d

-

Future Plan: DOSTEL 3D

DOSTEL 3D		
Dimension	180 x 92 x 226 mm ³	
Mass	~1.7 kg	
Power input	16V – 28V	
Power consumption	~6-10W	
Data	Ethernet	
DOSTEL 3D		
LED 1	POWER	
LED 2	DOSTEL X Status	
LED 3	DOSTEL Y Status	
LED 4	DOSTEL Z Status	

DOSTEL 3D		
Dimension	180 x 92 x 226 mm ³	
Mass	~1.7 kg	
Power input	16V – 28V	
Power consumption	~6-10W	
Data	Ethernet	
DOSTEL 3D		
LED 1	POWER	
LED 2	DOSTEL X Status	
LED 3	DOSTEL Y Status	
LED 4	DOSTEL Z Status	

DOSTEL 3D				
Dimension	180 x 92 x 226 mm ³			
Mass	~1.7 kg			
Power input	16V – 28V			
Power consumption	~6-10W			
Data	Ethernet			
DOSTEL 3D				
LED 1	POWER			
LED 2	DOSTEL X Status			
LED 3	DOSTEL Y Status			
LED 4	DOSTEL Z Status			

DOSTEL 3D		
Dimension	180 x 92 x 226 mm ³	
Mass	~1.7 kg	
Power input	16V – 28V	
Power consumption	~6-10W	
Data	Ethernet	
DOSTEL 3D		
LED 1	POWER	
LED 2	DOSTEL X Status	
LED 3	DOSTEL Y Status	
LED 4	DOSTEL Z Status	

DOSTEL3D Electronics

DOSTEL3D

DOSTEL3D

26

DOSTEL3D

Acknowledgement

 The CAU work on DOSIS/DOSIS3D has been supported under grants 50WB0826, 50WB1026, 50WB1232, 50WB1533 und 50WB1817 by Federal Ministry of Economics and Technology

- Thanks for patience and attention!

Federal Ministry of Economics and Technology

on the basis of a decision by the German Bundestag

Backup slides...

26th WRMISS, 5 – 7 September 2023, Rome, Italy

μGy/h in Si

С

| A

U

30

Unterstützung biologischer Experimente

1еар ISTITUT FÜR EXPERIMENTELLE UND ANGEWAN

Experiment	On-orbit	Report	Submission
Endothelial Cells	411. September 2015	DOSIS-3D-DLR- REP-BIO-001	01-03-2016
Extremophiles	May – August 2017	DLR-ME-SBA- DOSIS 3D - BIO- Extremophiles-2017	12-02-2018
ARTHROSPIRA-B	15.12.2017 – 24.01.2018	DLR-ME-SBA- DOSIS 3D - BIO- 2018	12-02-2018
BIOROCK	30.7. 2019 - 20.8.2019	DOSIS-3D-DLR- REP-BIOROCK-001	17-10-2019
Rotifer B1	9 – 16 December 2019	DOSIS-3D-DLR- REP-ROTIFER-B1- 001	10-03-2020
BioAsteroid	8 to 19 December 2020	DOSIS-3D-DLR- REP-BioAsteroid- 001	26-04-2021
Rotifer B2	20 th December 2020 - 8 th January 2021	DOSIS-3D-DLR- REP-Rotifer B2-001	26-04-2021
CANES	03 rd March 2020 - 12 th January 2021	DOSIS-3D-DLR- REP-CANES-001	27-04-2021
MOLECULAR MUSCLE 2	05 th - 11 th June 2021.	DOSIS-3D-DLR- REP-MOLECULAR MUSCLE 2-001	05-07-2021
BIOFILMS	29th August - 30th September 2021	DOSIS-3D-DLR- REP-BIOFILMS-001	11-02-2022
Thermo Mini	06.12.2021 17:18 - 08.12.2021 10:18 22.11.2021 07:50 - 24.11.2021 08:05 15.11.2021 17:37 - 17.11.2021 08:00	DOSIS-3D-DLR- REP-ThermoMini- 001	21-02-2022
EVOOS	Crew-4		
Epigenetic Adaptation	Crew-4		

DOSIS/DOSIS3D DOSTEL Dosisleistung (Monatsmittel)

- Dosisleistung sortiert nach SAA/non-SAA (GCR)
- Umrechnungsfaktor Dosis in Silizium zu Dosis in Wasser: 1.23
- Q(GCR) = 3.1 3.3
- Q(SAA) = 1.2 1.3
- SAA: 60 μ Gy/d 250 μ Gy/d, 80 μ Sv/d 300 μ Sv/d GCR: 120 μ Gy/d 160 μ Gy/d, ^{sop}
- 380 µSv/d 490 µSv/d

DOSIS - DOSTEL

Radiation Environment in Space

Galactic Cosmic Rays (GCR)

lons from protons to iron

Trapped Radiation (Van Allen Belts)

 Low energy protons and electrons

Solar particle events

• Protons (in dependence of the solar cycle)

Variation of the radiation load onboard the ISS with altitude, latitude and time

CAU

DOSIS SAA LET Spectra DOSTEL-1

DOSIS 3D Mode 2 Data

1eap

10⁴

SAA (mainly)

DOSIS 3D Sept 2017 SPE

DOSTEL-2 counts / s (in 6.93cm²)

DoY 2017

DOSIS 3D Sept 2017 SPE DOSTEL-2

keV/ μ m H₂O

DOSIS 3D Sept 2017 SPE

1 counts/s in 6.93cm²

DoY 2009

CAU

SAA Dose Rates

DOSIS & DOSIS 3D : Passive Detector Packages (PDP)

Thermoluminescence detectors (TLD)

First usage of LiF (Lithiumfluoride) for the measurement of radiation following an atomic weapon test

Measurement of internal radiation dose received by cancer patients treated with radioactiv isotopes at Oak Ridge Institute for Nuclear Studies

F. Daniels Science 117, 343, 1953

Nuclear Track Etch Detectors (CR-39)

Material : CR-39 = allyl diglycol carbonate

Heavy charged particles break chemical bonds in the material. This trail can be made visible by etching the material.

R. P. Henke and E. V. Benton, Nucl.Instr.Meth. 97 (**1971**) 483-9

The combination of passive thermoluminescence detectors and nuclear track etch detectors allows to determine the absorbed dose (in Gray) and the dose equivalent (in Sievert).