Mo BRSNS S T el T W W W W T e D U R D W VT o TR W RN, i SR R WSS T

Federico Donnini

(INFN Sez. Perugia)
on behalf of the AMS collaboration
Roma, 06-09-2023




The Alpha Magnetic Spectrometer (AMS-02) 2

AMS-02 is a high energy particle physics experiment operating continuously
on board of the International Space Station since May 2011.
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AMS-02 has collected more than 225 billions events up to now.
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Galactic Cosmic Rays (GCRs) Propagation
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Primary GCRs are mostly created inside stars and accelerated in supernovae.
Secondary GCRs are mostly produced by the collisions of primaries with the ISM.



Solar physics with AMS-02

» Large time scale effects (~years):
O intensity variation of CRs
O charge sign dependence:
O at solar maximum: diffusion
O at solar minimum: diffusion +
magnetic drift

» Small time scale effects (~days):
O Forbush decrease & Solar Energetic
Particles (SEP)
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Solar physics with AMS-02: Nuclei

The Cosmic Rays propagation in the heliosphere is described by Parker equation:

Particle density in af

= aof
phase space 3¢ = VSW VF+V- (K- Vf)"‘ V- VSWalnR

Solar wind Diffusion and Adlabatlc energy
convection Drifts losses

» Velocity dependence of the diffusion tensor: the velocity induces changes in this term for nuclei with

- M R
different A/Z since B(R) = JRE (A2 2 amo)?

» Difference in spectral shape: the adiabatic energy losses term depends on the spectral shape. If
two nuclei have different spectral shape outside the heliosphere (LIS), the last term will be different.

Measuring the effect of solar modulation on elements with different spectral shape

(primary/secondary) and/or different A/Z (as ex. C, O = 2, Li~2.3) provides information of the
propagation of CRs in the Heliosphere



AMS-02 detector 6

AMS-02 makes multiple and/or Independent measurements of charge (Z), energy (B, p, E) and charge sign ().

It separates hadrons from leptons, matter from anti-matter, chemical and isotopic composition from fraction of GeV to multi-TeV.
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AMS Flux Measurement

The isotropic differential flux in the
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» The Time dependent flux measurement is performed in 141 Bartels rotations (time periods of 27 days). Each flux is calculated
including specific corrections for detector efficiencies, unfolding, background subtraction specific for each period.



AMS Periodic Table 10

* In this work is presented the time evolution of light nuclei from 2 GV to 60 GV, with
P Rl 5.3M Li, 2.6M Be, 7.8M B, 26.1M C, 6.6M N and 22.1M O events.

H \ * The time range is from May 2011 to Nov 2022, for a total of 141 Bartels rotations
\ \ (27 days).
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i M. Aguilar et al., Phys. Rev. Lett. 127, 271102 (2021)

Helium and its isotopes:
Si M. Aguilar et al., Phys. Rev. Lett. 123, 181102 (2019)
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Relative Flux variation during the Solar Cycle

2 | 1 1 1 1 1 1 1 1 1 1 _ 8

1.8 « May27/2012 —]

1.6 = « Nov/18/2013 =

T E . « April/26/2018

Lower solar activit -

140, y . May/20/2022 —

N 4 —]

¢ q2p ., e, =
< — ¢t 1 LI Vo, LI . - \ R
f% 1 * ‘j;:;;;;.:iai&iiiﬂ:ti!;ﬂ#ii#ﬁ%
) N A LR * _
o 08 [ L —]
06 ' E

= Higher solar activity =

0.4 — —]

0.2 A

0 [ ] ] ] ] ] ] | ] ] ] i

10 R [GV]

The &,/ @, for four Bartels rotations, shows the anti-correlation between flux and solar activity.



Light Nucleil Fluxes as Function of Time

Fluxes are anti-correlated with solar activity, being higher during epoch of low solar activity
and lower during epoch of high solar activity. All nuclei exhibit similar long-term and short-term time dependences.
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Light Nuclei Fluxes as Function of Time 13
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reliminary data, please refer to the forthcoming AMS publication
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C/O and N/O as Function of Time 14

Carbon/Oxygen Nitrogen/Oxygen
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No significant time dependence is observed for Carbon over Oxygen (very similar spectrum and A/Z
ratio) and Nitrogen over Oxygen (similar spectrum and A/Z ratio).



Li/C, Be/C and B/C as Function of Time

Lithium / Carbon
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+ Lithium, Beryllium and Boron are secondaries with similar spectra, and different from Carbon.
+ TheA/Zis 2.17 for Lithium, 2 for Beryllium and 2.14 for Boron.
* The time trend is more visible in Lithium/Carbon ratio.

» These ratios allow us to test some properties of the propagation inside the heliosphere.



Conclusions 16

« The AMS fluxes vs time for light ions (Li to O), from May 2011 to Nov 2022, has been presented. It is
the first time-dependent measurement of these fluxes between 1.92 (2.15) and 60 GV. The fluxes
and their ratios have been determined for 141 Bartels rotations, i.e. on a 27-day basis.

« The fluxes are anti-correlated with solar activity, and the amplitude of the time structures decrease
with rigidity. All nuclei exhibit similar long-term and short-term time variation.

« The ratios of light nuclei has been inspected as function of time. Ratios between nuclei with
differences in spectral shape and A/Z (Li/C, Be/C, B/C) exhibit some non-negligible time variation,
while ratios with more similar spectral shape and A/Z (C/O, N/O) do not exhibit time variation.

 AMS-02 will continue operating during the full Solar Cycle 25. Its precise data will improve our
understanding in the cosmic rays propagation mechanism inside the heliosphere.

» For the final data and results of this analysis, please refers to the forthcoming publication.






Installation of an
additional plane of
silicon sensor (~7 m?)
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Proton and Helium Daily Fluxes
AMS collected 6 billion protons and 850 million Helium nuclei from May 2011 up to May 2021

Protons Helium
AMS 10 years update. First results in:
2019 Phys. Rev. Lett. 127, 271102 (2021) 2019
Phys. Rev. Lett. 128, 231102 (2022) 2018
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Proton

and Helium Daily Fluxes
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AMS Nucleil Flux Measurement

» L1, UTOF, Inner Tracker (L2-L8), LTOF* and L9*
Consistent Charge along Particle Trajector

Charge Resolution (c.u)

9=7=16 AZIZ ~0.13-0.19
Z=26 AZIZ ~ 0.33

» TOF (4 Layers): Velocity and Direction

z=1 ABIR? ~ 4%

»> Tracker (9 layers) + Magnet: Rigidity (Momentum/Charge)

Coordinates Resolution MDR
Z=1 10 um 2TV
9=7=16 6 -8 pum 3.0-35TV

Z =26 5.8 um 35TV



Residual Background

Tracker L1 — 6.2

TRD -5.7

Upper ToF1-5.8

Upper ToF2 —10.9

Inner Tracker — 4.9

Lower ToF1 -5.0

Tracker L9 — 5.2

With the track defined by the inner tracker (L2-L8),
examine the charge distribution on the tracker L1.
The high redundancy of charge measurements
allows to keep under control interactions in the upper
part of the detector (between Tracker L1 and L2)

10*

Events

wWh=

Tracker L1 Charge



Rigidity Measurement

One important source of systematic uncertainties is the
knowledge of the rigidity measurement.

This affects both the energy scale of the AMS spectrometer and
the bin-to-bin migrations due to the spectrometer resolution.
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Nuclear cross section measurement with AMS

Knowledge of nuclei interaction cross sections in the AMS material (mostly carbon and aluminum)

crucial to accurately measure nuclei fluxes.

Inelastic cross sections data available only for few target and projectiles. No measurement beyond 10 GV.

We measure the survival probabilities of nuclei with in-flight AMS data. Q.Yan et. al., Nucl. Phys. A 996 121712
(2020)

First, we use the seven inner tracker layers,
L2-L8, to define beams of nuclei: He, Li, Be,
=

Second, we use left-to-right particles to
measure the nuclear interactions in the
lower part of the detector.

Third, we use right-to-left particles to
measure the nuclear interactions in the
upper part of detector.




Nuclear cross section measurement with AMS

The measured “Survival probabilities” are
then compared with the corresponding
predictions from the MC simulation. The
relevant cross-sections are then
estimated from this procedure and
corrected in the MC simulation.
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Nuclear cross section measurement with AMS
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With L1-L2and L8-L9survival probabilities, AMS can
obtain the inelastic cross sections of many other
nuclei on C (Al).



Nuclear cross section measurement with AMS

The cross-sections are studied at the level of the single nuclear branching-factor thanks, again, to the high
redundancy in the charge measurements in AMS. Q.Yan et. al., Nucl. Phys. A 996 121712 (2020)
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