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Overview of Artemis 1

• First in a series of Artemis missions to the moon
• Nov 16, 2022 – Dec 11, 2022 ; ~ 25 days 11 hrs

• Only Unmanned Artemis Mission

• Vehicle Configuration 
• MPCV Orion

• ESA Service Module

• Interim Cryogenic Propulsion System (ICPS)

• Payloads
• MARE dummies (HELGA and ZOHAR)

• Commander Campos (Moonikin)

• Large assortment of Radiation Hardware

• Official Flight Kit (OFK)

• Various Instrumentation
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Radiation Hardware on Artemis-I

• Artemis I has multiple detectors and payloads 
for radiation measurement
• Hybrid Electronic Radiation Assessor (HERA)

• 3 Timepix based sensor units

• Active monitor: provides min-by-min dose data

• Crew Active Dosimeters (CAD)
• CADs worn by MARE and Campos Dummies

• Matroshka AstroRad Radiation Experiment (MARE)

• NASA Passive Sensors: 6 RAMs (TLDs)

• Various IP sensors: EADs, M-42s, etc…

• Both HERA (as ISS-HERA and AHoSS) and CADs 
have operated on ISS
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Objectives

1. Showcase and contextualize the results from the radiation sensors 
(HERAs LSU, HSU1, and HSU2) that flew on Artemis 1

2. Demonstrate our current operational ability to model the radiation 
environment from Artemis 1

3. Provide an estimate of effective dose for a hypothetical crew member.
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Modeling Artemis 1

• Mission Segments and Trajectories 
• Outgoing portion – As-flown trajectories (< 10 ER, 0.257 days)

• Free-space for Trans-lunar-injection and retrograde lunar orbit and return (~25 days)

• Re-entry portion – As-flown trajectories (< 10 ER, 0.191 days) (may only show freespace GCR)

• Radiation Transport
• 1DHZETRN, Depth-Dose calculation in Al-slabs per environment, CIMIRAE workflow (OLTARIS-like)

• Environment Modeling
• Ap9 Trapped protons (Mean), Ae9 Trapped electrons (Median) (IRENE, v1.57.004)

• GCR: Badhwar-O’Neill 2020 (Slaba and Whitman), GEOFFB-IGRF12 magnetic field for modulation

• All environments modeled as isotropic

• Vehicle and Human Phantom Shielding
• MPCV CAD model ray-traces (10,000 directions)

• MAX voxel phantom for tissue doses (Moonikin) 

• Effective Dose
• NSCR 2012 Effective Dose Model, computed in NASA’s Radiation Analysis Environment (RAE)
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CAD model Raytracing

• Artemis 1 MPCV Orion + SM CAD 
raytraced to obtain areal density
• 10,000 ray directions per position (HERAs shown)

• Converted to 1 layer, aluminum equivalent thickness

• ICPS not included

Mean Median
10th 
Ptile

25th 
Ptile

90th 
Ptile

HPU1 (g/cm2) 56.2 44.5 17.3 27.3 106.7

HSU1 (g/cm2) 52.2 41.6 18.2 27.5 97.5

HSU2 (g/cm2) 40.3 27.3 5.7 10.8 93.0
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Artemis 1 Outbound Timeline

Outbound Limb (November 16, 2022)
• 6:47:44 a.m. - Liftoff

• 6:49:56 a.m. - Solid Rocket Booster separation (Mission Elapsed Time 00:02:12)

• 6:55:47 a.m. - Core stage main engine cutoff commanded (MET 00:08:04)

• 6:55:59 a.m. - Core Stage/ICPS separation (MET 00:08:16)

• 7:11:11 a.m. – Enters Van Allen Proton Belt (Ap9 est.)

• 7:40:40 – 07:41:02 a.m. - Perigee Raise Maneuver (MET 00:51:22)

• 22 seconds in duration

• 7:46:41 a.m. – Exits Van Allen Proton Belt (Ap9 est.)

• 8:17:00 – 8:35:11 a.m. - Trans-lunar injection (MET 01:38:03)

• 17 minute, 59 second burn

• 8:27:00 – Enter Van Allen Electron Belt (Ae9 est.)

• 8:45:20 a.m. - Orion/ICPS separation (MET 02:06:10)

• 10:09:20 p.m. - ICPS Disposal Burn (MET 03:30:10)

• 13:24:11  p.m. - Exit Van Allen Electron Belt (Ae9 est.)

• 14:35:15 p.m. - Outbound Trajectory Correction-1 burn (MET 07:56:05)
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Artemis 1 Modeling and Data
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HERAs – Inner VAB

• Transits Inner VAB 7:11am to 7:46am GMT
• Qualitatively good agreement with Ap9 + modulated GCR dose rates

• Modelled peak rates are 70%-80% of measured

• Cumulative dose also in good agreement (Table) Sensor Cum. Dose Error 

Artemis 1 LSU -13.8%

Artemis 1 HSU1 -13.9%

Artemis 1 HSU2 -9.4%
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HERAs – Inner VAB

• Unexpected anomaly in HERA dose rates
• Obvious discontinuity (dip) in HERA dose rate and frame rate 

for LSU and HSU2, not represented in Ap9 model

• Leading explanation is a drastic change in orientation prior to 
PRM, combined with anisotropy in proton environment
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HERAs – Outer VAB

• Transits Outer VAB 8:27:00 to 13:24:11 GMT
• 1DHZETRN largely overestimated absorbed dose from trapped 

electrons to point sensors

• This is expected; 1D HZETRN is poor at modeling stochastic 
particles like bremsstrahlung photons induced by primary electrons

Sensor Cum. Dose Error 

Artemis 1 LSU 92.5%

Artemis 1 HSU1 152.2%

Artemis 1 HSU2 146.6%

HERA Frame – Outer VAB Belt
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Comparing ISS Doses to Artemis

• ISS experienced 3 ascending SAA passes 
during Artemis 1 Outbound (6hr window)
• Showing Si dose reported by 2 collocated sensors: ISS RAD and 

Timepix REM I06 (USLab Overhead-Zenith)

Sensor Dose in Si

Artemis 1 LSU 1255 µGy

Artemis 1 HSU1 1289 µGy

Artemis 1 HSU2 2633 µGy

ISS I06-W0246 88 µGy

ISS RAD 79 µGy
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HERAs - Freespace GCR

• Freespace GCR environment for most of Artemis 1
• 1DHZETRN + Freespace BON2020 GCR model nominally 

10% lower than measured. Quality factors also in good 
agreement

• Returning leg folded into Freespace portion

Measured 1DHZETRN % Diff

LSU (mGy/Day) 0.336 0.307 -8.5%

<Q> 2.3 2.5
HSU1  (mGy/Day) 0.328 0.302 -7.9%

<Q> 2.6 2.5
HSU2  (mGy/Day) 0.32 0.284 -11.3%

<Q> 3.1 3.2

• HERAs minute data plotted with ISS 
GCR sensor data
• Smoothed (10 min. rolling window average)

• SAA mask applied in plot (B and L cuts)

GCR Only GCR+SAA

ISS REM I06 (mGy/Day) 0.129 0.223

ISS RAD (mGy/Day) 0.132 0.208
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Full Mission Dose

• Full mission dose model nominally 10% lower than measured
• Cumulative Dose values dominated by Freespace GCR dose rates

• No significant VAB dose (measured or modeled) on return
• Measurements showed Freespace GCR until shutdown before splashdown, no VAB passes in models

Total Mission Dose in Si

Measured 1DHZETRN % Diff

LSU (mGy) 9.8 8.9 -9%

HSU1 (mGy) 9.5 8.9 -7%

HSU2 (mGy) 10.8 9.7 -10%
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Total Mission Dose in Si

Measured
Moonikin Campos CAD (mGy) 9.816



Effective Dose Computation
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Computing Effective Dose

• On ISS, Radiation Area Monitors and Crew Dosimetry provide 
reference point measurements in the vehicle
• Currently, 7 Timepix REM-2s (exclude BEAM) and the RAD detector
• Dose to sensors can be modeled and compared to measurements

• Transport of GCR and trapped protons through a human 
phantom (MAX/FAX†) provides modeled tissue absorbed dose

• Both are used Operationally to estimate total NSCR 2012 
effective dose to crew member
• Model GCR + Trapped proton dose to sensors and CADs 
• Normalization factors is computed to scale Trapped proton 

contribution and minimize error

• Same can be done in Artemis 1 Outbound segment in RAE
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ISS Normalization Using Passive Sensors

• Assume the measured dose of detector i is 𝐷𝑀,𝑖 , and is modeled ideally by the sum of modeled 

GCR dose 𝐷𝑚,𝑖
𝐺𝐶𝑅 and modeled normalized Trapped dose 𝑐𝑇𝑟𝑝𝐷𝑚,𝑖

𝑇𝑟𝑝
for N detectors. The squared 

sum error of this model is

𝜖 = 

𝑖=1

𝑁

𝐷𝑀,𝑖 − 𝐷𝑚,𝑖
𝐺𝐶𝑅 + 𝑐𝑇𝑟𝑝 𝐷𝑚,𝑖

𝑇𝑟𝑝 2

• Minimizing error 𝜖 with respect to changing normalization factor  𝑐𝑇𝑟𝑝 gives the following

𝑐𝑇𝑟𝑝 =
σ𝑖=1
𝑁 𝐷𝑚,𝑖

𝑇𝑟𝑝
𝐷𝑀,𝑖 − 𝐷𝑚,𝑖

𝐺𝐶𝑅

σ𝑖=1
𝑁 𝐷𝑚,𝑖

𝑇𝑟𝑝 2

• The final normalization constant 𝑐𝐴𝑣𝑒 is the average ratio of measured dosimeter (CPD) doses 
𝐷𝑀,𝐶𝑃𝐷 and simulated CPD doses with trapped normalization applied, for all N positions

𝑐𝐴𝑣𝑒 =
1

𝑁


𝑖=1

𝑁
𝐷𝑀,𝐶𝑃𝐷

𝐷𝑚,𝐶𝑃𝐷,𝑖
𝐺𝐶𝑅 + 𝑐𝑇𝑟𝑝𝐷𝑚,𝐶𝑃𝐷,𝑖

𝑇𝑟𝑝
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Computing Effective Dose

• Simplified look at how we determine effective dose to humans in LEO

HZETRN Compute depth-
dose table for Si sensor 

HZETRN Compute depth-
dose table for Tissue

Compute Dose at HERA 
positions and CAD response

Generate Normalization 
Factors for VAB protons 

Compute Tissue fluxes at 
MAX/FAX phantom tissues 

Apply Normalization Factors 
to VAB proton tissue fluxes

Compute NSCR 2012 
Effective Dose

• This normalization method applies to LEO where measurements are available only (GCR + Trapped) 
i.e. only the Artemis Outbound limb. Freespace GCR is not currently normalized
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𝑐𝐴𝑣𝑒 Φ𝑚,𝑡𝑖𝑠𝑠𝑢𝑒
𝐺𝐶𝑅 + 𝑐𝑇𝑟𝑝Φ𝑚,𝑡𝑖𝑠𝑠𝑢𝑒

𝑇𝑟𝑝
= Φ𝑚,𝑡𝑖𝑠𝑠𝑢𝑒



Campos “Occupational” Dose

• RAE Mission parameters for Moonikin Campos Artemis 1 crew dose report
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Male
Astronaut 
Parameters

Mission 
Parameters

Dosimetry Parameters
(input as dose in H2O)



Campos “Occupational” Dose

• Generated a mock dose report for Commander Campos in RAE using MAX
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Conclusions

• Artemis 1 mission radiation exposure would not pose a significant acute 
or chronic health risk to crew members 
• 22.3 mSv against astronaut career limit of 600 mSv

• Dose modeling methods used on ISS are sufficient for Artemis missions
• Pure models nominally 10% lower than measurements, VAB protons normalized

• Improvements can of course be made to models
• 3DHZETRN results from Langley Research Center (LaRC) for Freespace GCR calculations have 

been promising!

• Incorporate attitude information and consideration of non-isotropic VAB primary particle 
modeling improve 1DHZETRN error

• Normalization for Freespace GCR dose (exists, but not operationally implemented)

• Monte Carlo for dose calculation from VAB electrons
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Thank You

NOT FOR REDISTRIBUTIONWRMISS 2023 Rome, Italy 22



Tissue Specific Equivalent Dose

• Tissue Specific Equivalent Dose for MAX phantom in Campos position
• Relative Biological Effectiveness factors applied (1.5 for protons, 2.5 for A > 1)

*Time axis are NOT on same scale

• Blood Forming Organ (BFO) Gy-eq used 
as acute effects metric i.e. bone marrow 
syndrome

• Dose is well below threshold for any acute 
effects (NASA 30-day PEL – 250 mGy-eq)

• Peak BFO dose rates for VAB transit and 
’89 SPE nearly identical

• Outgoing limb – As-flown trajectories (< 
10 ER, 0.257 days)
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BON2020 GCR Model

1Slaba, Tony & Whitman, K.. (2020). The Badhwar‐O'Neill 2020 GCR Model. Space Weather. 18. 10.1029/2020SW002456. 
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• BON2020SSN model1 used to generate GCR particle fluxes
• Updated local interstellar spectrum (LIS) from BON2014

• Rigidity derived from monthly smoothed SSN values during 
Artemis 1 timeline


