UPDATE ON ARTEMIS-HERA ON SPACE STATION (A-HOSS)

2023 Workshop on Radiation Monitoring for the ISS

Sept 07, 2023

N. Stoffle, Ph.D., P.E. on behalf of the SRAG Science Team

Leidos, Inc. NASA JSC Space Radiation Analysis Group

Introduction •oo	Instrument 00000	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides

ACKNOWLEDGEMENTS

The A-HoSS hardware has operated on ISS for over 2.5 years as a direct result of effort by a number of people affiliated with NASA JSC, KBR, Leidos, and the University of Houston:

 M. Abdelmelek, T. Campbell-Rickets, A. Castro, R. Gaza, S. George, B. Hayes, D. Laramore, S. Li, H. Nguyen, P. Nystrom, A. Pham, L. Pinsky, E. Semones, A. Schram, M. Vandewalle, C. Zeitlin

Introduction	Instrument	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides
		ΟΤΙΛΑΤΙΟΝ			

Artemis-HERA on Space Station (A-HoSS) demonstrates the operational readiness of the Artemis-II HERA radiation detection system and provides ground teams with a data stream similar to that received from Artemis-II

- Full data set daily via SSC interface and associated OCA downlinks
- HERA telemetry stream is captured and translated to Arcturus
- Arcturus provides the HERA real-time telemetry stream from ISS
- Radiation console in MCC-H utilizes the real-time data to:
 - build and test Artemis displays and operations scenarios
 - gain in-flight experience with the system prior to crewed missions

Introduction	Instrument	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides
	<u></u>				

SYSTEM OVERVIEW

Artemis-II HERA system operating on ISS

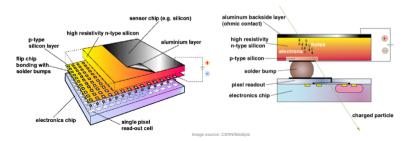
- As-delivered Artemis-II system similar to ISS HERA (returned Jan 2020)
- 1 processing unit and 2 sensing units mounted on an Ultem printed bracket
- 120V Power via UOP
- Telemetry via Arcturus using RS422-to-USB converter
- Full data sets via Ethernet connection to SSC
- SSC software included in SSC load (ISS HERA)
- Arcturus software provides real-time telemetry and commanding
- Hardware delivered to ISS on NG-15
- Demonstrated continuous operation for 30 days
- Operating in USLab since March 02, 2021

Introduction	Instrument ●0000	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides

HYBRID ELECTRONIC RADIATION ASSESSOR (HERA)

Exploration Mission monitoring hardware

- Up to 4 Timepix sensors per system
 - Local sensor on Processing Unit
 - Up to 3 remote Sensor Units
- On-system processing and analysis
- Active telemetry available for crew displays and ground monitoring
- Caution and Warning messages available for Artemis-II+



Introduction	Instrument o●ooo	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides

TIMEPIX DETECTORS

CERN-developed Timepix hybrid pixel detectors

- Pixelated sensors with independent pixel electronics
- Time over Threshold measurements per pixel
- Calibrated to provide energy deposited per pixel
- Provides deposition pattern characteristics
- Utilized in REM hardware for ISS monitoring

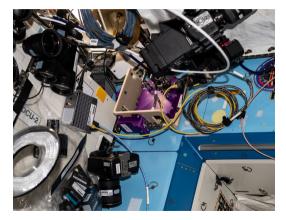
Introduction	Instrument ○○●○○	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides
A-HOSS					

Artemis-II HERA certified for ISS

- 1 Processor Unit
- 2 Sensor Units
- 3D printed frame (Ultem)
- Power and Data cables
- Mounting frame allows minimal footprint and orthogonal measurements
- Station Support Computer interface allows data transmission via TCP/IP
- Arcturus interface (RS422-to-USB) allows telemetry via Ku

Introduction	Instrument 000●0	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides

OPERATIONS CONCEPT - SSC


- Deploy AHoSS at LAB1O6 near ISS RAD
- SSC application transfers data from HERA to SSC
- Application then transfers data from SSC to server location
- OCA performs daily file downlinks of logs and raw data
- Continuous acquisition with stable AHoSS power
- Occasional data interruptions from SSC operations

Introduction
000Instrument
00000Data and Analysis
00000AHoSS Continued Operation on ISS
00Summary
0Additional Slides
000

OPERATIONS CONCEPT - ARCTURUS

- Deploy and utilize Adlink hardware nearby AHoSS
- AHoSS application running on Adlink
 - Catches telemetry stream from the RS422-USB interface
 - Packs HERA generated telemetry for Arcturus ingestion/downlink
- Capability to command HERA system
 - No impacts outside HERA
 - Detector mode changes
 - System memory management
 - Housekeeping tasks

Introduction	Instrument	Data and Analysis ●○○○○	AHoSS Continued Operation on ISS	Summary o	Additional Slides
A-HOSS [DUCTS			

GMT:	2021:2	21/20:43:5	9		HERA Displ	ay V1.0						EXIT
OrtonTin	ne	2021:	221/20:58:10	.936						SQUID		3037
HERAS	rsternMode		Acc	uire	Cmd ORION	_CYCLI	C_DIS	PLAY	DATA	Checksur		6C3
HSUPer	SwitchStatus		HSU2_HSU1_LS	U_ON	CmdFlag					PISize		47
HERAE)	cecutionInd		NOP	INAL	NumOmdRecv					Sync		FC1D1AC
HERAE)	cocutionIndFla				BuitInTestStatus				BITFlag	Destinati		ORION
HERAS	rstemAlarm		All (lear	000000000000000000000000000000000000000	00000000	00000000	0		Source		HPU_I
						Dose F	late (µGy	imin)				
	Sensor Statu		Dose Rate	Alarm							Cummulative	Dose (mGy)
LSU	NOMI	NAL	Αιι ει	ear	0.06		0.05		0.06		4	7.4
HSU 1	NOMI	NAL	Αιι ει	ear	0.04		0.05		0.07			9.0
HSU 2	NOMI	NAL	Αιι ει	ear	0.04		0.06		0.05			7.2
HSU 3		OFF			0.00		0.00		0.00	м		0.0
					Dose Rate History	(µGy/min)						
		10 min	20 min	45 min	90 min				hrs	12 hrs	24 hrs	48 hrs
	0.05	θ.15	0.26	0.06	0.04	θ.	.05	θ.	07	θ.12	0.28	0.21
HSU 1	0.05	0.10	0.26	0.04	0.06				10	0.12	0.30	0.22
HSU 2	0.07	0.09	0.27	0.07	0.05		04		04	0.13	0.25	0.30
HSU 3	0.00 M	0.00	M 0.00 M	0.60	M 0.60	Μ Θ.	66 M	Θ.	00 M	0.00	M 0.00	M 0.00

• Full data via SSC path

- Daily file downlinks
- Timestamped frames
- Science, Engineering, Display, and CW message sets
- Telemetry via Arcturus
 - Artemis vehicle message sets
 - Limited file downlinks
 - Real-time ground displays

ARTEMIS-II HERA MESSAGE SETS

A-HoSS incorporates the Artemis-II HERA which uses 4 primary message sets

Science

- Message rate of 0.016 Hz (1/60s)
- Dose rate in water [mGy/min]
- Rotating Bin sets [0-4] of 21 bins
- Bins for Protons, Alphas Photons & Electrons, Heavy Ions, LET1, LET2

Display

- Message rate of 1 Hz (1/s)
- Current dose rate in water [mGy/min]
- Cumulative mission dose [mGy]
- Dose rate history table
- System mode and status
- Sensor mode and status

Engineering

- Message rate of 0.1 Hz (1/10s)
- System uptime
- Memory usage
- System and Sensor Health and Status
 - Voltages and Currents
 - Timepix and board temperatures
 - System and sensor fault status

Caution and Warning

- Message rate of 1 Hz (1/s)
- Built-In Test Status
- System-level alarm
- Sensor-level alarms

Introduction	Instrument	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides
A-HOSS F	PER-MINU	TE DOSE RATE	ES FOR 2023 MAY 10		

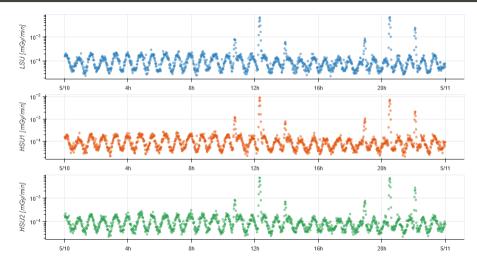
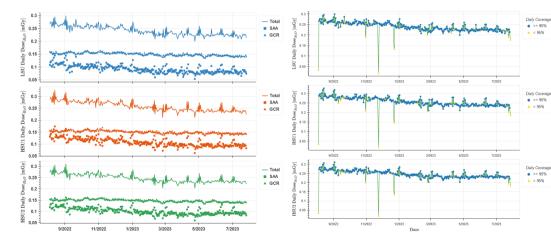



Figure 1: Per-minute doses (in water) for 2023 GMT 130

Figure 2: Daily doses (in water) by detector for 22GMT216 to 23GMT237 for days with >95% coverage

Figure 3: Coverage rates by detector for 22GMT216 to 23GMT237. SSC outages account for drops in coverage from data transfer gaps.

Introduction	Instrument 00000	Data and Analysis 0000●	AHoSS Continued Operation on ISS	Summary o	Additional Slides
j			i i	r i	

A-HOSS DOSE RATES BY REGION

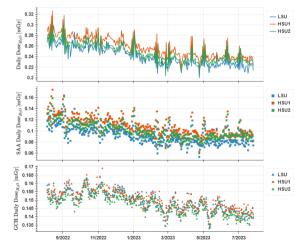


Figure 4: Daily doses in water by region for 22GMT216 to 23GMT237. Bad frames (3) removed.

Introduction	Instrument	Data and Analysis	AHoSS Continued Operation on ISS ●○	Summary o	Additional Slides

TRANSITION TO OPERATIONS

AHoSS has been operating as a payload since 02 March, 2021

- Performing well for 2.5 years as of this presentation
- Payload operations are complete and objectives met
- Transition to ISS operations hardware approved and targeted for Oct 01

Introduct	ion Instru 000		HoSS Continued Operation on ISS	Summary o	Additional Slides

NEW AHOSS LOCATION

New location provides additional data point to compliment RAD and REM data across ISS

- Good history of data overlap and comparisons with ISS RAD
- Deploy location identified during ISS Topology review with JAXA input
- AHoSS relocation to JPM in work

Introduction	Instrument	Data and Analysis	AHoSS Continued Operation on ISS	Summary ●	Additional Slides
SUMMAR	ł –				

- A-HoSS is a Timepix-based Artemis-II flight system operating on ISS
- Delivered on NG-15 (Feb 2021) and deployed at Lab1S6 on 02 March, 2021
- Demonstrated Artemis-II system readiness
- Provides experience with real-time Artemis-like data
- Transition to ISS operations expected by 2023 Oct 01

Introduction	Instrument 00000	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides

Additional Slides

Introduction	Instrument	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides
ADDITION	IAL IMAGE	S			

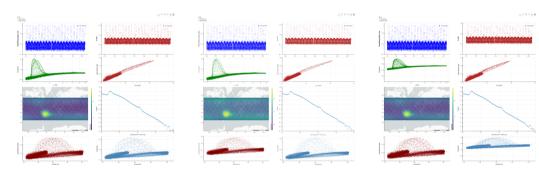


Figure 5: Interactive AHoSS Data for 2023 GMT 197 to 217

Introduction	Instrument 00000	Data and Analysis	AHoSS Continued Operation on ISS	Summary o	Additional Slides ○○●
UNFILTE	RED DAILY	DOSES			

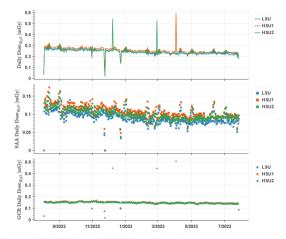


Figure 6: AHoSS daily doses for 22GMT216 to 23GMT237 including all data points including data outages and 3 bad frames